2,330 research outputs found

    Periodic Modulation Effect on Self-Trapping of Two weakly coupled Bose-Einstein Condensates

    Full text link
    With phase space analysis approach, we investigate thoroughly the self-trapping phenomenon for two weakly coupled Bose-Einstein condensates (BEC) in a symmetric double-well potential. We identify two kinds of self-trapping by their different relative phase behavior. With applying a periodic modulation on the energy bias of the system we find the occurrence of the self-trapping can be controlled, saying, the transition parameters can be adjusted effectively by the periodic modulation. Analytic expressions for the dependence of the transition parameters on the modulation parameters are derived for high and low frequency modulations. For an intermediate frequency modulation, we find the resonance between the periodic modulation and nonlinear Rabi oscillation dramatically affects the tunnelling dynamics and demonstrate many novel phenomena. Finally, we study the effects of many-body quantum fluctuation on self-trapping and discuss the possible experimental realization of the model.Comment: 7 pages, 11 figure

    Many-Body Effects on Nonadiabatic Feshbach Conversion in Bosonic Systems

    Full text link
    We investigate the dynamics of converting cold bosonic atoms to molecules when an external magnetic field is swept across a Feshbach resonance. Our analysis relies on a zero temperature quantum microscopic model that accounts for many-body effects, triggering the association process. We show that the picture of two-body molecular production depicted by Landau-Zener model is significantly altered due to many-body effects. In nonadiabatic regime, we derive an analytic expression for molecular conversion efficiency that explains the discrepancy between the prediction of Landau-Zener formula and experimental data[Hodby et al., Phys. Rev. Lett. {\bf 94}, 120402 (2005)]. Our theory is further extended to the formation of heteronuclear diatomic molecules and gives some interesting predictions.Comment: 7pages 5figure

    Rosen-Zener Transition in a Nonlinear Two-Level System

    Full text link
    We study Rosen-Zener transition (RZT) in a nonlinear two-level system in which the level energies depend on the occupation of the levels, representing a mean-field type of interaction between the particles. We find that the nonlinearity could affect the quantum transition dramatically. At certain nonlinearity the 100% population transfer between two levels is observed and found to be robust over a very wide range of external parameters. On the other hand, the quantum transition could be completely blocked by a strong nonlinearity. In the sudden and adiabatic limits we have derived analytical expressions for the transition probability. Numerical explorations are made for a wide range of parameters of the general case. Possible applications of our theory to Bose-Einstern Condensates (BECs) are discussed.Comment: 8 pages, 8 figure

    Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    Get PDF
    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data

    Adiabatic Fidelity for Atom-Molecule Conversion in a Nonlinear Three-Level \Lambda-system

    Full text link
    We investigate the dynamics of the population transfer for atom-molecule three-level Λ\Lambda-system on stimulated Raman adiabatic passage(STIRAP). We find that the adiabatic fidelity for the coherent population trapping(CPT) state or dark state, as the function of the adiabatic parameter, approaches to unit in a power law. The power exponent however is much less than the prediction of linear adiabatic theorem. We further discuss how to achieve higher adiabatic fidelity for the dark state through optimizing the external parameters of STIRAP. Our discussions are helpful to gain higher atom-molecule conversion yield in practical experiments.Comment: 4 pages, 5 figure

    Role of Particle Interactions in the Feshbach Conversion of Fermion Atoms to Bosonic Molecules

    Full text link
    We investigate the Feshbach conversion of fermion atomic pairs to condensed boson molecules with a microscopic model that accounts the repulsive interactions among all the particles involved. We find that the conversion efficiency is enhanced by the interaction between boson molecules while suppressed by the interactions between fermion atoms and between atom and molecule. In certain cases, the combined effect of these interactions leads to a ceiling of less than 100% on the conversion efficiency even in the adiabatic limit. Our model predicts a non-monotonic dependence of the efficiency on mean atomic density. Our theory agrees well with recent experiments on 6^6Li and 40^{40}K.Comment: 5 pages, 4 figure

    Nonlinear Ramsey interferometry with the Rosen-Zener pulses on a two-component Bose-Einstein condensate

    Full text link
    We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme, two Rosen-Zener pulses are separated by an intermediate holding period of variable duration and through varying the holding period we have observed nice Ramsey interference patterns in time domain. In contrast to the standard Ramsey fringes our nonlinear Ramsey patterns display diversiform structures ascribed to the interplay of the nonlinearity and asymmetry. In particular, we find that the frequency of the nonlinear Ramsey fringes exactly reflects the strength of nonlinearity as well as the asymmetry of system. Our finding suggests a potential application of the nonlinear Ramsey interferometry in calibrating the atomic parameters such as scattering length and energy spectrum.Comment: 8 pages, 9 figure

    The role of particle interactions in a many-body model of Feshbach molecular formation in bosonic systems

    Full text link
    In this paper, we investigate the atom-molecule conversion dynamics of a generalized many-body model that includes the atom-atom, atom-molecule, and molecule-molecule interactions, emphasizing the efficiency of the Feshbach molecular formation. We show that the picture of two-body molecular production depicted by the Landau-Zener model is significantly altered: The energy levels are dramatically distorted and the conversion efficiency is suppressed by the particle interactions. According to the rule of constant action and with the help of phase-space analysis, we derive an analytical expression for the conversion efficiency in the adiabatic limit. It shows a ceiling for the conversion efficiency when the interaction strength is larger than a critical value. We further derive a closed equation for the conversion efficiency with the stationary phase approximation. In the sudden limit, the conversion efficiency is twice that predicted by the two-body Landau-Zener formula. Our analytical formula has been confirmed by numerical calculations.Comment: 7 pages, 5 figure

    Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface

    Get PDF
    In order to ameliorate the properties of corrosion resistance and achieve applications in anti-biofouling of 316L stainless steel (SS), a sulfated derivative of chitosan was deposited onto stainless steel surface by an electrochemical method. In detail, chitosan-catechol (CS-CT) was synthesised in the hydrochloric acid solution by the Mannich reaction and then electrodeposited on the surface of the polished 316L stainless steel. The chitosan-catechol deposited SS sample was further modified with maleic anhydride and sulfite. The grafting progress was monitored by FTIR, UV spectrophotometer and X-ray photoelectron spectroscopy. Hydrophilicity and corrosion resistance of modified SS were characterized by water contact angle measurements, Tafel curves and electrochemical impedance spectroscopy. The morphology of the SS surface before and after the modification was investigated by atomic force microscopy and scanning electron microscope. Further, the anti-biofouling performance in terms of the anti-adsorption protein and anti-bacteria effects of all modified SS samples were estimated, and the modified 316L exhibits the capability of lower protein adsorption and improved antibacterial effect.info:eu-repo/semantics/publishedVersio
    • …
    corecore