56 research outputs found

    Editorial: Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education, Well-Being) Applications

    Get PDF
    This Research Topic is composed of 11 accepted papers: seven dedicated to original research, a perspective, a mini review and two opinion pieces, and are dedicated to various themes and perspectives. These contributions address the multi-faceted nature of non-clinical BCIs, ranging from ethical ramifications of these neurotechnologies, applications to the arts, education, communication, wellbeing, and sports to the readiness of BCI deployment for gaming

    In Vivo Retinal Pigment Epithelium Imaging using Transscleral Optical Imaging in Healthy Eyes.

    Get PDF
    To image healthy retinal pigment epithelial (RPE) cells in vivo using Transscleral OPtical Imaging (TOPI) and to analyze statistics of RPE cell features as a function of age, axial length (AL), and eccentricity. Single-center, exploratory, prospective, and descriptive clinical study. Forty-nine eyes (AL: 24.03 ± 0.93 mm; range: 21.9-26.7 mm) from 29 participants aged 21 to 70 years (37.1 ± 13.3 years; 19 men, 10 women). Retinal images, including fundus photography and spectral-domain OCT, AL, and refractive error measurements were collected at baseline. For each eye, 6 high-resolution RPE images were acquired using TOPI at different locations, one of them being imaged 5 times to evaluate the repeatability of the method. Follow-up ophthalmic examination was repeated 1 to 3 weeks after TOPI to assess safety. Retinal pigment epithelial images were analyzed with a custom automated software to extract cell parameters. Statistical analysis of the selected high-contrast images included calculation of coefficient of variation (CoV) for each feature at each repetition and Spearman and Mann-Whitney tests to investigate the relationship between cell features and eye and subject characteristics. Retinal pigment epithelial cell features: density, area, center-to-center spacing, number of neighbors, circularity, elongation, solidity, and border distance CoV. Macular RPE cell features were extracted from TOPI images at an eccentricity of 1.6° to 16.3° from the fovea. For each feature, the mean CoV was < 4%. Spearman test showed correlation within RPE cell features. In the perifovea, the region in which images were selected for all participants, longer AL significantly correlated with decreased RPE cell density (R Spearman, Rs = -0.746; P < 0.0001) and increased cell area (Rs = 0.668; P < 0.0001), without morphologic changes. Aging was also significantly correlated with decreased RPE density (Rs = -0.391; P = 0.036) and increased cell area (Rs = 0.454; P = 0.013). Lower circular, less symmetric, more elongated, and larger cells were observed in those > 50 years. The TOPI technology imaged RPE cells in vivo with a repeatability of < 4% for the CoV and was used to analyze the influence of physiologic factors on RPE cell morphometry in the perifovea of healthy volunteers. Proprietary or commercial disclosure may be found after the references

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    Spin Exchange Monitoring of the Strong Positive Homotropic Allosteric Binding of a Tetraradical by a Synthetic Receptor in Water

    Full text link

    Introduction

    No full text

    Materiel and method

    No full text

    Bacterial contamination of the hospital environment during wound dressing change.

    Get PDF
    International audienceINTRODUCTION: The hospital environment plays a role in the cross-transmission of multidrug-resistant bacteria. The aim of this study was to evaluate the bacterial contamination of the hospital environment during chronic wound dressing change. PATIENTS AND METHODS: This study was performed from July 2010 to May 2011. Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae were counted in environmental samples (air and surfaces) that were obtained in the rooms of patients with wounds colonized (cases, n=9) or not (controls, n=15) during or not during wound dressing change. Bacterial contamination was compared to that found in the rooms of patients without colonized wounds. RESULTS: The environment was frequently contaminated during wound dressing change (38% of the sampled series were positive). In comparison, the contamination was less frequent in the environment of patients with colonized wounds when the wounds were not being dressed (14.3%) and in controls (3.8%). S. aureus was the most frequent species identified in positive samples. DISCUSSION: These results suggest that previously recommended measures such as hand hygiene after contact with the environment and wearing a mask are justified. Moreover, other measures should be suggested, in particular cleaning the room before and after dressing change of colonized wounds. LEVEL OF EVIDENCE: Level III: case control study
    • 

    corecore