21,560 research outputs found

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    Theoretical study of production of unique glasses in space

    Get PDF
    The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate

    Further infrared systems studies for the earth resources program Final report

    Get PDF
    Design of multispectral scanner for orbital earth resources detectio

    Null Strings in Schwarzschild Spacetime

    Get PDF
    The null string equations of motion and constraints in the Schwarzschild spacetime are given. The solutions are those of the null geodesics of General Relativity appended by a null string constraint in which the "constants of motion" depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical interpretation of the solutions is completely different from the point particle case. In particular, a null string is generally not propagating in a plane through the origin, although each of its individual points is. Some special solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with a constant radial coordinate rr moving vertically from the south pole to the north pole around the photon sphere, is presented. A general discussion of classical null/tensile strings as compared to massless/massive particles is given. For instance, tensile circular solutions with a constant radial coordinate rr do not exist at all. The results are discussed in relation to the previous literature on the subject.Comment: 16 pages, REVTEX, no figure

    From the WZWN Model to the Liouville Equation: Exact String Dynamics in Conformally Invariant AdS Background

    Get PDF
    It has been known for some time that the SL(2,R) WZWN model reduces to Liouville theory. Here we give a direct and physical derivation of this result based on the classical string equations of motion and the proper string size. This allows us to extract precisely the physical effects of the metric and antisymmetric tensor, respectively, on the {\it exact} string dynamics in the SL(2,R) background. The general solution to the proper string size is also found. We show that the antisymmetric tensor (corresponding to conformal invariance) generally gives rise to repulsion, and it precisely cancels the dominant attractive term arising from the metric. Both the sinh-Gordon and the cosh-Gordon sectors of the string dynamics in non-conformally invariant AdS spacetime reduce here to the Liouville equation (with different signs of the potential), while the original Liouville sector reduces to the free wave equation. Only the very large classical string size is affected by the torsion. Medium and small size string behaviours are unchanged. We also find illustrative classes of string solutions in the SL(2,R) background: dynamical closed as well as stationary open spiralling strings, for which the effect of torsion is somewhat like the effect of rotation in the metric. Similarly, the string solutions in the 2+1 BH-AdS background with torsion and angular momentum are fully analyzed.Comment: 24 pages including 4 postscript figures. Enlarged version including a section on string solutions in 2+1 black hole background. To be published in Phys. Rev. D., December 199

    Near-IR Spectroscopy of a Young Super-Star Cluster in NGC 6946: Chemical Abundances and Abundance Patterns

    Full text link
    Using the NIRSPEC spectrograph at Keck II, we have obtained H and K-band echelle spectra for a young (10-15 Myr), luminous (MV=-13.2) super-star cluster in the nearby spiral galaxy NGC 6946. From spectral synthesis and equivalent width measurements we obtain for the first time accurate abundances and abundance patterns in an extragalactic super-star cluster. We find [Fe/H]=-0.45+/-0.08 dex, an average alpha-enhancement of +0.22+/-0.1 dex, and a relatively low 12C/13C~ 8+/-2 isotopic ratio. We also measure a velocity dispersion of ~9.1 km/s, in agreement with previous estimates. We conclude that integrated high-dispersion spectroscopy of massive star clusters is a promising alternative to other methods for abundance analysis in extragalactic young stellar populations.Comment: 5 pages, incl. 2 figures. Accepted for publication in MNRAS Letters. The definitive version will be available at http://www.blackwell-synergy.co

    Circular String-Instabilities in Curved Spacetime

    Full text link
    We investigate the connection between curved spacetime and the emergence of string-instabilities, following the approach developed by Loust\'{o} and S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised equations determining the comoving physical (transverse) perturbations on circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow infinitely for r0r\rightarrow 0 (ring-collapse), while the "angular" perturbations are bounded in this limit. For rr\rightarrow\infty we find that the perturbations in both physical directions (perpendicular to the string world-sheet in 4 dimensions) blow up in the case of de Sitter space. This confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris, Meudon No. 9305

    Quantum Coherent String States in AdS_3 and SL(2,R) WZWN Model

    Get PDF
    In this paper we make the connection between semi-classical string quantization and exact conformal field theory quantization of strings in 2+1 Anti de Sitter spacetime. More precisely, considering the WZWN model corresponding to SL(2,R) and its covering group, we construct quantum {\it coherent} string states, which generalize the ordinary coherent states of quantum mechanics, and show that in the classical limit they correspond to oscillating circular strings. After quantization, the spectrum is found to consist of two parts: A continuous spectrum of low mass states (partly tachyonic) fulfilling the standard spin-level condition necessary for unitarity |j|< k/2, and a discrete spectrum of high mass states with asymptotic behaviour m^2\alpha'\propto N^2 (N positive integer). The quantization condition for the high mass states arises from the condition of finite positive norm of the coherent string states, and the result agrees with our previous results obtained using semi-classical quantization. In the k\to\infty limit, all the usual properties of coherent or {\it quasi-classical} states are recovered. It should be stressed that we consider the circular strings only for simplicity and clarity, and that our construction can easily be used for other string configurations too. We also compare our results with those obtained in the recent preprint hep-th/0001053 by Maldacena and Ooguri.Comment: Misprints corrected. Final version to appear in Phys. Rev.
    corecore