671 research outputs found
Renal apolipoprotein A-I amyloidosis: a rare and usually ignored cause of hereditary tubulointerstitial nephritis
12openopenGregorini G; Izzi C; Obici L; Tardanico R; Röcken C; Viola BF; Capistrano M; Donadei S; Biasi L; Scalvini T; Merlini G; Scolari F.Gregorini, G; Izzi, C; Obici, L; Tardanico, R; Röcken, C; Viola, Bf; Capistrano, M; Donadei, S; Biasi, L; Scalvini, T; Merlini, G; Scolari, Francesc
Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds
Urinary secretion and extracellular aggregation of mutant uromodulin isoforms
Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease. Previous in vitro studies found retention in the endoplasmic reticulum as a common feature of all uromodulin mutant isoforms. Both in vitro and in vivo we found that mutant isoforms partially escaped retention in the endoplasmic reticulum and reached the plasma membrane where they formed large extracellular aggregates that have a dominant-negative effect on coexpressed wild-type protein. Notably, mutant uromodulin excretion was detected in patients carrying uromodulin mutations. Thus, our results suggest that mutant uromodulin exerts a gain-of-function effect that can be exerted by both intra- and extracellular forms of the protein
Localization of a gene for nonsyndromic renal hypodysplasia to chromosome 1p32-33.
Nonsyndromic defects in the urinary tract are the most common cause of end-stage renal failure in children and account for a significant proportion of adult nephropathy. The genetic basis of these disorders is not fully understood. We studied seven multiplex kindreds ascertained via an index case with a nonsyndromic solitary kidney or renal hypodysplasia. Systematic ultrasonographic screening revealed that many family members harbor malformations, such as solitary kidneys, hypodysplasia, or ureteric abnormalities (in a total of 29 affected individuals). A genomewide scan identified significant linkage to a 6.9-Mb segment on chromosome 1p32-33 under an autosomal dominant model with reduced penetrance (peak LOD score 3.5 at D1S2652 in the largest kindred). Altogether, three of the seven families showed positive LOD scores at this interval, demonstrating heterogeneity of the trait (peak HLOD 3.9, with 45% of families linked). The chromosome 1p32-33 interval contains 52 transcription units, and at least 23 of these are expressed at stage E12.5 in the murine ureteric bud and/or metanephric mesenchyme. These data show that autosomal dominant nonsyndromic renal hypodysplasia and associated urinary tract malformations are genetically heterogeneous and identify a locus for this common cause of human kidney failure
Familial aggregation of primary glomerulonephritis in an Italian population isolate: Valtrompia study
Mutations in DSTYK and dominant urinary tract malformations.
ABSTRACT
Introduction
Congenital abnormalities of the kidney of the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and their etiology is poorly understood.
Methods
We performed genome-wide linkage analysis and whole-exome sequencing in a family with autosomal dominant congenital abnormalities of the kidney of the urinary tract (7 affected family members). We also performed sequence analysis in 311 unrelated patients, as well as histologic and functional studies.
Results
Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single rare deleterious variant within these linkage intervals, a heterozygous splice-site mutation in dual serine/threonine and tyrosine protein kinase (DSTYK). This variant, which resulted in aberrant gene product splicing, was present in all affected family members. Additional independent DSTYK mutations, including nonsense and splice-site mutations, were detected among 7/311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in multi-organ developmental defects, resembling loss of fibroblast growth factor (FGF) signaling. Consistent with this finding, DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. Finally, DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated ERK-phosphorylation, the principal signal downstream of receptor tyrosine kinases.
Conclusions
We detected DSTYK mutations in 2.2% of patients with congenital abnormalities of the kidney and urinary tract whom we studied, suggesting that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling
Use of anti-TNF Etanercept in paediatric patients with autoimmune disease and ocular involvement: the Parma experience
Hydrogen plasma and thermal annealing treatments on a-Si:H thin film for c-Si surface passivation
High efficiency solar cells can be fruitfully built using the amorphous/crystalline silicon technology, taking advantage of the high Voc that occurs as a consequence of excellent c-Si surface passivation provided by a-Si:H films. Improvements of the interface quality can be obtained using post deposition treatments such as hydrogen plasma and thermal annealing. We propose the use of surface photovoltage technique, as a contact-less tool to evaluate the energetic distribution of the state density at amorphous/crystalline silicon interface, and FTIR spectroscopy of the same samples to appreciate the evolution of Si-H and Si-H2 bonds. This approach leads to interesting applications for monitoring and improving the interface electronic quality, which is extremely susceptible to the different treatments adopted. We found that thermal annealing produces a metastable state which goes back to the initial state after just 48 hours, while the effect of hydrogen plasma post-treatment results more stable. Moreover H2 plasma reduces the defect density of one order of magnitude with respect to thermal annealing and keeps it constant also after one month. The hydrogen plasma is able to reduce the defect density but at the same time increases the surface charge within the a-Si:H film due to the H+ ions accumulated during the plasma exposure, leading to a more stable configuration
- …
