4,107 research outputs found

    An ab initio study of 3s core-level x-ray photoemission spectra in transition metals

    Full text link
    We calculate the 3s3s- and 4s4s-core-level x-ray photoemission spectroscopy (XPS) spectra in the ferromagnetic and nonmagnetic transition metals by developing an \emph{ab initio} method. We obtain the spectra exhibiting the characteristic shapes as a function of binding energy in good agreement with experimental observations. The spectral shapes are strikingly different between the majority spin channel and the minority spin channel for ferromagnetic metals Ni, Co, and Fe, that is, large intensities appear in the higher binding energy side of the main peak (satellite) in the majority spin channel. Such satellite or shoulder intensities are also obtained for nonmagnetic metals V and Ru. These behaviors are elucidated in terms of the change of the one-electron states induced by the core-hole potential.Comment: 11 pages, 12 figures, to appear in Phys. Rev.

    Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    Get PDF
    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics

    Magnetic excitations in L-edge resonant inelastic x-ray scattering from cuprate compounds

    Full text link
    We study the magnetic excitation spectra in L-edge resonant inelastic x-ray scattering (RIXS) from undoped cuprates. We analyze the second-order dipole allowed process that the strong perturbation works through the intermediate state in which the spin degree of freedom is lost at the core-hole site. Within the approximation neglecting the perturbation on the neighboring sites, we derive the spin-flip final state in the scattering channel with changing the polarization, which leads to the RIXS spectra expressed as the dynamical structure factor of the transverse spin components. We assume a spherical form of the spin-conserving final state in the channel without changing the polarization, which leads to the RIXS spectra expressed as the 'exchange'-type multi-spin correlation function. Evaluating numerically the transition amplitudes to these final states on a finite-size cluster, we obtain a sizable amount of the transition amplitude to the spin-conserving final state in comparison with that to the spin-flip final state. We treat the itinerant magnetic excitations in the final state by means of the 1/S-expansion method. Evaluating the higher-order correction with 1/S, we find that the peak arising from the one-magnon excitation is reduced with its weight, and the continuous spectra arising from the three-magnon excitations come out. The interaction between two magnons is treated by summing up the ladder diagrams. On the basis of these results, we analyze the L_3-edge RIXS spectra in Sr_2CuO_2Cl_2 in comparison with the experiment. It is shown that the three-magnon excitations as well as the two-magnon excitations give rise to the intensity in the high energy side of the one-magnon peak, making the spectral shape asymmetric with wide width, in good agreement with the experiment.Comment: 18 pages, 10 figures, Revte

    Theory of resonant inelastic x-ray scattering at the K edge in La2_2CuO4_4 - Multiple scattering effects -

    Full text link
    We develop a theory of resonant inelastic x-ray scattering (RIXS) at the KK edge in La2_2CuO4_4 on the basis of the Keldysh Green's function formalism. In our previous analysis (Phys. Rev. B 71, 035110 (2005)), the scattering by the core-hole potential was treated within the Born approximation, and a crude-model density of states was used for the 4p4p band. We improve the analysis by taking account of the multiple scattering in Cu3d-O2p2p bands and by using a realistic 4p4p DOS obtained from a band calculation. The multiple scattering effect is evaluated with the use of the time representation developed by Nozi\`eres and De Dominicis. It is found that the multiple scattering effect makes the KK-edge peak in the absorption coefficient shift to the lower energy region as a function of photon energy, that is, the photon energy required to excite the 1s1s electron to the KK-edge peak reduces. It is also found that the multiple-scattering effect does not change the two-peak structure in the RIXS spectra but modifies slightly the shape as a function of energy loss. These findings suggests that the multiple scattering effect could mainly be included into a renormalization of the core-level energy and partly justify the Born approximation, leading to a future application to the RIXS in three-dimensional systems.Comment: revised version with extended discussion, 24 pages, 12 figures, accepted for PR

    Analysis of resonant inelastic x-ray scattering at the KK edge in NiO

    Full text link
    We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the Ni KK edge in an antiferromagnetic insulator NiO by applying the theory developed by the present authors. It is based on the Keldysh Green's function formalism, and treats the core-hole potential in the intermediate state within the Born approximation. We calculate the single-particle energy bands within the Hartree-Fock approximation on the basis of the multi-orbital tight-binding model. Using these energy bands together with the 4p4p density of states from an ab initio band structure calculation, we calculate the RIXS intensities as a function of energy loss. By taking account of electron correlation within the random phase approximation (RPA), we obtain quantitative agreement with the experimental RIXS spectra, which consist of prominent two peaks around 5 eV and 8 eV, and the former shows considerable dispersion while the latter shows no dispersion. We interpret the peaks as a result of a band-to-band transition augmented by the RPA correlation.Comment: 11 pages, 10 figures, submitted to PR

    Casimir effect between moving branes

    Get PDF
    We consider a supersymmetric model with a single matter supermultiplet in a five-dimensional space-time with orbifold compactification along the fifth dimension. The boundary conditions on the two orbifold planes are chosen in such a way that supersymmetry remains unbroken on the boundaries. We calculate the vacuum energy-momentum tensor in a configuration in which the boundary branes are moving with constant velocity. The results show that the contribution from fermions cancels that of bosons only in the static limit, but in general a velocity-dependent Casimir energy arises between the branes. We relate this effect to the particle production due to the branes motion and finally we discuss some cosmological consequences.Comment: 14 pages, LaTeX. Final version with new references included, to be published in Nucl. Phys.

    Twist Symmetry and Classical Solutions in Open String Field Theory

    Full text link
    We construct classical solutions of open string field theory which are not invariant under ordinary twist operation. From detailed analysis of the moduli space of the solutions, it turns out that our solutions become nontrivial at boundaries of the moduli space. The cohomology of the modified BRST operator and the CSFT potential evaluated by the level truncation method strongly support the fact that our nontrivial solutions correspond to the closed string vacuum. We show that the nontrivial solutions are equivalent to the twist even solution which was found by Takahashi and Tanimoto, and twist invariance of open string field theory remains after the shift of the classical backgrounds.Comment: 19 pages, 2 figures; v2: errors fixe

    Theoretical Analysis of Resonant Inelastic X-Ray Scattering Spectra in LaMnO3

    Full text link
    We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the K edge of Mn in the antiferromagnetic insulating manganite LaMnO3. We make use of the Keldysh-type Green-function formalism, in which the RIXS intensity is described by a product of an incident-photon-dependent factor and a density-density correlation function in the 3d states. We calculate the former factor using the 4p density of states given by an ab initio band structure calculation and the latter using a multi-orbital tight-binding model. The ground state of the model Hamiltonian is evaluated within the Hartree-Fock approximation. Correlation effects are treated within the random phase approximation (RPA). We obtain the RIXS intensity in a wide range of energy-loss 2-15 eV. The spectral shape is strongly modified by the RPA correlation, showing good agreement with the experiments. The incident-photon-energy dependence also agrees well with the experiments. The present mechanism that the RIXS spectra arise from band-to-band transitions to screen the core-hole potential is quite different from the orbiton picture previously proposed, enabling a comprehensive understanding of the RIXS spectra.Comment: 20 pages, 10 figures, To be published in PR

    Spin Excitations and Sum Rules in the Heisenberg Antiferromagnet

    Full text link
    Various bounds for the energy of collective excitations in the Heisenberg antiferromagnet are presented and discussed using the formalism of sum rules. We show that the Feynman approximation significantly overestimates (by about 30\% in the S=12S={1\over2} square lattice) the spin velocity due to the non negligible contribution of multi magnons to the energy weighted sum rule. We also discuss a different, Goldstone type bound depending explicitly on the order parameter (staggered magnetization). This bound is shown to be proportional to the dispersion of classical spin wave theory with a q-independent normalization factor. Rigorous bounds for the excitation energies in the anisotropic Heisenberg model are also presented.Comment: 26 pages, Plain TeX including 1 PostScript figure, UTF-307-10/9

    Multi-Bunch Solutions of Differential-Difference Equation for Traffic Flow

    Full text link
    Newell-Whitham type car-following model with hyperbolic tangent optimal velocity function in a one-lane circuit has a finite set of the exact solutions for steady traveling wave, which expressed by elliptic theta function. Each solution of the set describes a density wave with definite number of car-bunches in the circuit. By the numerical simulation, we observe a transition process from a uniform flow to the one-bunch analytic solution, which seems to be an attractor of the system. In the process, the system shows a series of cascade transitions visiting the configurations closely similar to the higher multi-bunch solutions in the set.Comment: revtex, 7 pages, 5 figure
    • …
    corecore