9,737 research outputs found
The vibrational predissociation spectroscopy of hydrogen cluster ions
The first infrared spectra of protonated hydrogen clusters in the gas phase have been observed. Predissociation spectra were taken with a tandem mass spectrometer: mass selected hydrogen cluster ions were irradiated inside a rf ion trap by a tunable infrared laser, and the fragment ions created by photodissociation of the clusters were mass selected and detected. Spectra for each product channel were measured by counting fragment ions as a function of laser frequency. Low resolution spectra (Deltanu=10 cm^−1) in the region from 3800 to 4200 cm^−1 were observed for the ions H + 5, H + 7, and H + 9 at 3910, 3980, and 4020 cm−1, respectively. A band was also observed for H + 5 at 3532 cm^−1. No rotational structure was resolved. The frequencies of the band maxima agree well with the frequencies predicted by previous ab initio calculations for the highest modes
Infrared spectra of the cluster ions H7O<sup> + </sup><sub>3</sub>·H2 and H9O<sup> + </sup><sub>4</sub>·H2
Infrared spectra of hydrated hydronium ions weakly bound to an H2 molecule, specifically H7O + 3 ·H2 and H9O + 4 ·H2, have been observed. Mass-selected parent ions, trapped in a radio frequency ion trap, are excited by a tunable infrared laser; following absorption, the complex predissociates with loss of the H2, and the resulting fragment ions are detected. Spectra have been taken from 3000 to 4000 cm^−1, with a resolution of 1.2 cm^−1. They are compared to recent theoretical and experimental spectra of the hydronium ion hydrates alone. Binding an H2 molecule to these clusters should only weakly perturb their vibrations; if so, our spectra should be similar to spectra of the hydrated hydronium ions H7O + 3 and H9O + 4
Observation of vortices and hidden pseudogap from scanning tunneling spectroscopic studies of electron-doped cuprate superconductor
We present the first demonstration of vortices in an electron-type cuprate
superconductor, the highest (= 43 K) electron-type cuprate
. Our spatially resolved quasiparticle tunneling spectra
reveal a hidden low-energy pseudogap inside the vortex core and unconventional
spectral evolution with temperature and magnetic field. These results cannot be
easily explained by the scenario of pure superconductivity in the ground state
of high- superconductivity.Comment: 6 pages, 4 figures. Two new graphs have been added into Figure 2.
Accepted for publication in Europhysics Letters. Corresponding author:
Nai-Chang Yeh (E-mail: [email protected]
Frozen light in periodic stacks of anisotropic layers
We consider a plane electromagnetic wave incident on a periodic stack of
dielectric layers. One of the alternating layers has an anisotropic refractive
index with an oblique orientation of the principal axis relative to the normal
to the layers. It was shown recently (A. Figotin and I. Vitebskiy, Phys. Rev.
E68, 036609 2003) that an obliquely incident light, upon entering such a
periodic stack, can be converted into an abnormal axially frozen mode with
drastically enhanced amplitude and zero normal component of the group velocity.
The stack reflectivity at this point can be very low, implying nearly total
conversion of the incident light into the frozen mode with huge energy density,
compared to that of the incident light. Supposedly, the frozen mode regime
requires strong birefringence in the anisotropic layers - by an order of
magnitude stronger than that available in common anisotropic dielectric
materials. In this paper we show how to overcome the above problem by
exploiting higher frequency bands of the photonic spectrum. We prove that a
robust frozen mode regime at optical wavelengths can be realized in stacks
composed of common anisotropic materials, such as YVO₄, LiNb,
CaCO₃, and the like.Comment: to be submitted to Phys. Rev.
Quasi-Homogeneous Backward-Wave Plasmonic Structures: Theory and Accurate Simulation
Backward waves and negative refraction are shown to exist in plasmonic
crystals whose lattice cell size is a very small fraction of the vacuum
wavelength (less than 1/40th in an illustrative example). Such
``quasi-homogeneity'' is important, in particular, for high-resolution imaging.
Real and complex Bloch bands are computed using the recently developed
finite-difference calculus of ``Flexible Local Approximation MEthods'' (FLAME)
that produces linear eigenproblems, as opposed to quadratic or nonlinear ones
typical for other techniques. FLAME dramatically improves the accuracy by
incorporating local analytical approximations of the solution into the
numerical scheme.Comment: 4 pages, 3 figure
Recommended from our members
Infrared spectroscopy of the cluster ions H<sup> + </sup><sub>3</sub>·(H2)n
The vibrational spectra of the clusters H + 3(H2)n were observed near 4000 cm−1 by vibrational predissociation spectroscopy. Spectra of mass-selected clusters were obtained by trapping the ions in a radio frequency ion trap, exciting vibrational transitions of the cluster ions to predissociating levels, and detecting the fragment ions with a mass spectrometer. Low resolution bands of the solvent H2 stretches were observed for the clusters of one to six H2 coordinated to an H + 3 ion. The red shift of these vibrations relative to the monomer H2 frequency supported the model of H + 9 as an H + 3 with a complete inner solvation shell of three H2, one bound to each corner of the ion. Two additional bands of H + 5 were observed, one assigned as the H + 3 symmetric stretch, and the other as a combination or overtone band. High-resolution scans (0.5 and 0.08 cm−1) of H + n, n=5, 7, and 9 yielded no observable rotational structure, a result of either spectral congestion or rapid cluster dissociation. The band contour of the H + 5 band changed upon cooling the internal degrees of freedom, but the peaks remained featureless. The observed frequencies of H + 7 and H + 9 agreed well with ab initio predictions, but those of H + 5 did not. This deviation is discussed in terms of the large expected anharmonicity of the proton bound dimer H + 5
High Resolution Crystal Structures of the Wild Type and Cys-55 right-arrow Ser and Cys-59 right-arrow Ser Variants of the Thioredoxin-like [2Fe-2S] Ferredoxin from Aquifex aeolicus
The [2Fe-2S] ferredoxin (Fd4) from Aquifex aeolicus adopts a thioredoxin-like polypeptide fold that is distinct from other [2Fe-2S] ferredoxins. Crystal structures of the Cys-55 right-arrow Ser (C55S) and Cys-59 right-arrow Ser (C59S) variants of this protein have been determined to 1.25 Ã… and 1.05 Ã… resolution, respectively, whereas the resolution of the wild type (WT) has been extended to 1.5 Ã…. The improved WT structure provides a detailed description of the [2Fe-2S] cluster, including two features that have not been noted previously in any [2Fe-2S] cluster-containing protein, namely, pronounced distortions in the cysteine coordination to the cluster and a Calpha -H-Sgamma hydrogen bond between cluster ligands Cys-55 and Cys-9. These features may contribute to the unusual electronic and magnetic properties of the [2Fe-2S] clusters in WT and variants of this ferredoxin. The structures of the two variants of Fd4, in which single cysteine ligands to the [2Fe-2S] cluster are replaced by serine, establish the metric details of serine-ligated Fe-S active sites with unprecedented accuracy. Both the cluster and its surrounding protein matrix change in subtle ways to accommodate this ligand substitution, particularly in terms of distortions of the Fe2S2 inorganic core from planarity and displacements of the polypeptide chain. These high resolution structures illustrate how the interactions between polypeptide chains and Fe-S active sites reflect combinations of flexibility and rigidity on the part of both partners; these themes are also evident in more complex systems, as exemplified by changes associated with serine ligation of the nitrogenase P cluster
Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality
We present scanning tunneling spectroscopic and high-field thermodynamic
studies of hole- and electron-doped (p- and n-type) cuprate superconductors.
Our experimental results are consistent with the notion that the ground state
of cuprates is in proximity to a quantum critical point (QCP) that separates a
pure superconducting (SC) phase from a phase comprised of coexisting SC and a
competing order, and the competing order is likely a spin-density wave (SDW).
The effect of applied magnetic field, tunneling current, and disorder on the
revelation of competing orders and on the low-energy excitations of the
cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International
Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail:
[email protected]
The lifetimes for spontaneous emission from the X 3Sigma−(v=1) and a 1Delta states of CH−
The radiative decay of excited CH− trapped in a radio frequency ion trap was measured, and the total excited state population was probed by observing the depletion of trapped CH− caused by photodetachment at 1.16 eV, below the expected electron affinity for the ground 3Sigma− state. The signal decayed biexponentially with time. We assigned the long lived state (lifetime 5.9+0.8, −0.6 s) as the metastable a 1Delta state previously identified in the photoelectron spectrum. The fast decay, with a lifetime of 1.75±0.15 ms, was attributed to the first excited vibrational level of the ground 3Sigma− state, in good agreement with a theoretical result by Manz, Zilch, Rosmus, and Werner. These results support the electron affinity of 1.238 eV for CH− obtained by Kasdan, Herbst, and Lineberger from photoelectron spectroscopy, and contradict the value of 0.74 eV determined by Feldmann from photodetachment spectroscopy
- …