477 research outputs found

    Optimizing local protocols implementing nonlocal quantum gates

    Full text link
    We present a method of optimizing recently designed protocols for implementing an arbitrary nonlocal unitary gate acting on a bipartite system. These protocols use only local operations and classical communication with the assistance of entanglement, and are deterministic while also being "one-shot", in that they use only one copy of an entangled resource state. The optimization is in the sense of minimizing the amount of entanglement used, and it is often the case that less entanglement is needed than with an alternative protocol using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546

    The Schur multiplier of McLaughlin's simple group

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41427/1/13_2005_Article_BF01196350.pd

    Fermionic representations for characters of M(3,t), M(4,5), M(5,6) and M(6,7) minimal models and related Rogers-Ramanujan type and dilogarithm identities

    Full text link
    Characters and linear combinations of characters that admit a fermionic sum representation as well as a factorized form are considered for some minimal Virasoro models. As a consequence, various Rogers-Ramanujan type identities are obtained. Dilogarithm identities producing corresponding effective central charges and secondary effective central charges are derived. Several ways of constructing more general fermionic representations are discussed.Comment: 14 pages, LaTex; minor correction

    Covariant Quantum Fields on Noncommutative Spacetimes

    Get PDF
    A spinless covariant field ϕ\phi on Minkowski spacetime \M^{d+1} obeys the relation U(a,Λ)ϕ(x)U(a,Λ)1=ϕ(Λx+a)U(a,\Lambda)\phi(x)U(a,\Lambda)^{-1}=\phi(\Lambda x+a) where (a,Λ)(a,\Lambda) is an element of the Poincar\'e group \Pg and U:(a,Λ)U(a,Λ)U:(a,\Lambda)\to U(a,\Lambda) is its unitary representation on quantum vector states. It expresses the fact that Poincar\'e transformations are being unitary implemented. It has a classical analogy where field covariance shows that Poincar\'e transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no covariant Voros fields compatible with *, a result we found earlier. The notion of Drinfel'd twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.Comment: 20 page

    Obstructing extensions of the functor Spec to noncommutative rings

    Full text link
    In this paper we study contravariant functors from the category of rings to the category of sets whose restriction to the full subcategory of commutative rings is isomorphic to the prime spectrum functor Spec. The main result reveals a common characteristic of these functors: every such functor assigns the empty set to M_n(C) for n >= 3. The proof relies, in part, on the Kochen-Specker Theorem of quantum mechanics. The analogous result for noncommutative extensions of the Gelfand spectrum functor for C*-algebras is also proved.Comment: 23 pages. To appear in Israel J. Math. Title was changed; introduction was rewritten; old Section 2 was removed to streamline the exposition; final section was rewritten to omit an error in the earlier proof of Theorem 1.

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    Clifford algebra as quantum language

    Get PDF
    We suggest Clifford algebra as a useful simplifying language for present quantum dynamics. Clifford algebras arise from representations of the permutation groups as they arise from representations of the rotation groups. Aggregates using such representations for their permutations obey Clifford statistics. The vectors supporting the Clifford algebras of permutations and rotations are plexors and spinors respectively. Physical spinors may actually be plexors describing quantum ensembles, not simple individuals. We use Clifford statistics to define quantum fields on a quantum space-time, and to formulate a quantum dynamics-field-space-time unity that evades the compactification problem. The quantum bits of history regarded as a quantum computation seem to obey a Clifford statistics.Comment: 13 pages, no figures. Some of these results were presented at the American Physical Society Centennial Meeting, Atlanta, March 25, 199

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22
    corecore