48 research outputs found

    A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations

    Full text link
    Extended and delayed emission around distant TeV sources induced by the effects of propagation of gamma rays through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). We search for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with the goal to detect or constrain the IGMF-dependent secondary flux generated during the propagation of TeV gamma rays through the intergalactic medium. We analyze the most recent MAGIC observations over a 5 year time span and complement them with historic data of the H.E.S.S. and VERITAS telescopes along with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace source evolution in the GeV-TeV band over one-and-a-half decade in time. We use Monte Carlo simulations to predict the delayed secondary gamma-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compare these predictions for various assumed IGMF strengths to all available measurements of the gamma-ray flux evolution. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14 years time span of observations. No evidence for the flux variability is found in 1-100 GeV energy range accessible to Fermi/LAT. Non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields which might explain the baryon asymmetry of the Universe.Comment: 10 pages, 5 figures, accepted to A&A. Corresponding authors: Ievgen Vovk, Paolo Da Vela (mailto:[email protected]) and Andrii Neronov (mailto:[email protected]

    State of nerve cells of the prostatic plexus after castration

    No full text

    Analysis of the overexpression of a newly found gene toothrin in Drosophila

    No full text
    A newly found locus of the Drosophila melanogaster genome, named toothrin (tth) has been used to study the role of the conserved the 2/3 domain of genes from the d4 family. In contrast to all vertebrates studied (including humans), in which the 2/3 domain is always accompanied by the d4 domain, the tth gene contains the sequence encoding the 2/3 domain but lacks that encoding the d4 domain. The tth gene overexpression has been studied using the two-component system UAS-GAL4. It has been demonstrated that the tth overexpression at the third-instar larval (prepupal) stage decreases survival rate, simultaneously causing a substantial deceleration of development in Drosophila. It is known that the change of developmental stages in Drosophila is controlled by the rates of the expression of ecdysteroid and juvenile hormones (JHs). It is supposed that the overexpression of the tth gene causes either a shift in the ecdysterone-to-JH ratio (through a decreased JH decay rate or a delayed initiation of ecdysone synthesis) or a deceleration of the release of ecdysterones synthesized
    corecore