91 research outputs found

    Venus wind-altitude radar study

    Get PDF
    A study was made of a wind/altitude radar for a Venus probe. The baseline configuration was taken to be the SKD-2100 Doppler radar modified to accommodate the altimeter portion of the APN-187 and a single beam antenna. Using current models of the Venus environment, engineering studies were made to define design requirements and to estimate the operational and physical characteristics of the conceptual design. The results of the study are that: (1) the radar instrument should have an altitude limit of at least 34 km for velocity and at least 17.5 km for altitude measurement, (2) vertical accuracy should be better than + or - 0.9 percent and horizontal velocity accuracy should be better than + or - 3 percent over the operating altitude range, and (3) altimeter accuracy should be within + or - 3 percent up to about 2.5 km and should improve over the remainder of the altimeter operating range. The radar is expected to require between 48.5 and 69.3 watts of power and to weigh between 3.86 and 5.21 kg (8.5 and 11.5 lb). In each case, if power could be supplied directly from the probe batteries the lower figures would apply; the upper figures would apply if a power conditioner must be used

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed
    corecore