393 research outputs found
An improved cell-volume analyzer
Design and operation of cell-volume analyzer friction, glaze ice, and studded tire effects on highway
Prenatal ultrasound detection of congenital gingival granular cell tumor.
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135345/1/jum1991103185.pd
Recommended from our members
Patterns of genetic inheritance and variation through ontogeny for hatchery and wild stocks of Chinook salmon
Although differences between selective pressures in hatcheries
and streams have been theorized to cause genetic divergence between
hatchery and wild salmonids, evidence of this is lacking. This study
was initiated to document the presence or absence of genetic change
in hatchery and wild stocks by characterizing genetic traits in fish
of various life history stages within a single generation.
Nine biochemical traits (enzyme loci) and 12 meristic traits
were characterized for adult fall chinook and one or more juvenile
stages of their progeny of the 1984 brood year. Study groups
consisted of hatchery-reared and naturally-reared subunits of
populations in two tributaries of the lower Columbia River: Abernathy
Creek and the Lewis River. Parents of both groups from Abernathy
Creek were primarily of hatchery origin, whereas parents of both
groups from the Lewis River were primarily of wild origin. The
experimental design thus included reciprocal comparisons of hatchery and
wild-reared groups from each of two stocks: one that has been
propagated under hatchery conditions for at least five generations
and one that has evolved in a stream environment.
Both biochemical and meristic traits varied among adult and
juvenile stages within hatchery and wild groups. Changes in some of
these traits appear to have been caused by natural selection. This
was true even for Abernathy hatchery and Lewis wild groups, which
have been in the same environment for many generations. The
direction and/or degree of change in some biochemical and meristic
traits differed between hatchery and wild groups from a given stream,
suggesting that selective pressures of the hatchery and wild
environments differed in those cases. However, it could not be
determined from these data whether the observed divergence of traits
reflects general differences in hatchery and stream environments, or
if it reflects population-specific responses to site-specific
environmental conditions. The extent to which patterns of genetic
change within a single generation might vary among year classes or
generations is likewise unknown.
Evidence of temporal changes in biochemical and meristic traits
of hatchery and wild fish within a single generation has important
implications regarding the use of those traits to characterize
stocks. Assumptions of temporal stability of biochemical or meristic
traits within or between year classes should be applied with caution.
Sampling strategies of studies involving these characters should
account for the possibility of temporal heterogeneity. Finally,
these results suggest that workers using allozymes as genetic tags
should test the assumption of selective neutrality of the particular
allozyme markers being used
Recommended from our members
Positron microanalysis with high intensity beams
One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig
Accuracy of chest computed tomography in distinguishing cystic pleuropulmonary blastoma from benign congenital lung malformations in children
Importance: The ability of computed tomography (CT) to distinguish between benign congenital lung malformations and malignant cystic pleuropulmonary blastomas (PPBs) is unclear.
Objective: To assess whether chest CT can detect malignant tumors among postnatally detected lung lesions in children.
Design, Setting, and Participants: This retrospective multicenter case-control study used a consortium database of 521 pathologically confirmed primary lung lesions from January 1, 2009, through December 31, 2015, to assess diagnostic accuracy. Preoperative CT scans of children with cystic PPB (cases) were selected and age-matched with CT scans from patients with postnatally detected congenital lung malformations (controls). Statistical analysis was performed from January 18 to September 6, 2020. Preoperative CT scans were interpreted independently by 9 experienced pediatric radiologists in a blinded fashion and analyzed from January 24, 2019, to September 6, 2020.
Main Outcomes and Measures: Accuracy, sensitivity, and specificity of CT in correctly identifying children with malignant tumors.
Results: Among 477 CT scans identified (282 boys [59%]; median age at CT, 3.6 months [IQR, 1.2-7.2 months]; median age at resection, 6.9 months [IQR, 4.2-12.8 months]), 40 cases were extensively reviewed; 9 cases (23%) had pathologically confirmed cystic PPB. The median age at CT was 7.3 months (IQR, 2.9-22.4 months), and median age at resection was 8.7 months (IQR, 5.0-24.4 months). The sensitivity of CT for detecting PPB was 58%, and the specificity was 83%. High suspicion for malignancy correlated with PPB pathology (odds ratio, 13.5; 95% CI, 2.7-67.3; P = .002). There was poor interrater reliability (κ = 0.36 [range, 0.06-0.64]; P \u3c .001) and no significant difference in specific imaging characteristics between PPB and benign cystic lesions. The overall accuracy rate for distinguishing benign vs malignant lesions was 81%.
Conclusions and Relevance: This study suggests that chest CT, the current criterion standard imaging modality to assess the lung parenchyma, may not accurately and reliably distinguish PPB from benign congenital lung malformations in children. In any cystic lung lesion without a prenatal diagnosis, operative management to confirm pathologic diagnosis is warranted
Positron-molecule interactions: resonant attachment, annihilation, and bound states
This article presents an overview of current understanding of the interaction
of low-energy positrons with molecules with emphasis on resonances, positron
attachment and annihilation. Annihilation rates measured as a function of
positron energy reveal the presence of vibrational Feshbach resonances (VFR)
for many polyatomic molecules. These resonances lead to strong enhancement of
the annihilation rates. They also provide evidence that positrons bind to many
molecular species. A quantitative theory of VFR-mediated attachment to small
molecules is presented. It is tested successfully for selected molecules (e.g.,
methyl halides and methanol) where all modes couple to the positron continuum.
Combination and overtone resonances are observed and their role is elucidated.
In larger molecules, annihilation rates from VFR far exceed those explicable on
the basis of single-mode resonances. These enhancements increase rapidly with
the number of vibrational degrees of freedom. While the details are as yet
unclear, intramolecular vibrational energy redistribution to states that do not
couple directly to the positron continuum appears to be responsible for these
enhanced annihilation rates. Downshifts of the VFR from the vibrational mode
energies have provided binding energies for thirty species. Their dependence
upon molecular parameters and their relationship to positron-atom and
positron-molecule binding energy calculations are discussed. Feshbach
resonances and positron binding to molecules are compared with the analogous
electron-molecule (negative ion) cases. The relationship of VFR-mediated
annihilation to other phenomena such as Doppler-broadening of the gamma-ray
annihilation spectra, annihilation of thermalized positrons in gases, and
annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure
Recommended from our members
The ionization of organic molecules by slow positrons
The ionization of organic molecules by positrons having energies above and below their positronium formation thresholds is reviewed. The sensitivity of sub-positronium ionization yields to chemical and structural properties of the molecules is discussed, and possible mechanisms for ionization and fragmentation are suggested. Plans are presented for future experiments to further elucidate mechanisms and to search for evidence of positronium compound formation
Recommended from our members
Preliminary considerations of an intense slow positron facility based on a sup 78 Kr loop in the high flux isotopes reactor
Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a {sup 78}Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec{sup {minus}1} m{sup {minus}2}, which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec {sup {minus}1}. The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the {sup 78}Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec{sup {minus}1}, which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig
- …