647 research outputs found
Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI and CrGeTe monolayers
Magnetic anisotropy is crucially important for the stabilization of
two-dimensional (2D) magnetism, which is rare in nature but highly desirable in
spintronics and for advancing fundamental knowledge. Recent works on CrI
and CrGeTe monolayers not only led to observations of the long-time-sought
2D ferromagnetism, but also revealed distinct magnetic anisotropy in the two
systems, namely Ising behavior for CrI versus Heisenberg behavior for
CrGeTe. Such magnetic difference strongly contrasts with structural and
electronic similarities of these two materials, and understanding it at a
microscopic scale should be of large benefits. Here, first-principles
calculations are performed and analyzed to develop a simple Hamiltonian, to
investigate magnetic anisotropy of CrI and CrGeTe monolayers. The
anisotropic exchange coupling in both systems is surprisingly determined to be
of Kitaev-type. Moreover, the interplay between this Kitaev interaction and
single ion anisotropy (SIA) is found to naturally explain the different
magnetic behaviors of CrI and CrGeTe. Finally, both the Kitaev
interaction and SIA are further found to be induced by spin-orbit coupling of
the heavy ligands (I of CrI or Te of CrGeTe) rather than the commonly
believed 3d magnetic Cr ions
Multi-wavelength observations of 2HWC J1928+177: dark accelerator or new TeV gamma-ray binary?
2HWC J1928+177 is a Galactic TeV gamma-ray source detected by the High
Altitude Water Cherenkov (HAWC) Observatory up to ~ 56 TeV. The HAWC source,
later confirmed by H.E.S.S., still remains unidentified as a dark accelerator
since there is no apparent supernova remnant or pulsar wind nebula detected in
the lower energy bands. The radio pulsar PSR J1928+1746, coinciding with the
HAWC source position, has no X-ray counterpart. Our SED modeling shows that
inverse Compton scattering in the putative pulsar wind nebula can account for
the TeV emission only if the unseen nebula is extended beyond r ~ 4 [arcmin].
Alternatively, TeV gamma rays may be produced by hadronic interactions between
relativistic protons from an undetected supernova remnant associated with the
radio pulsar and a nearby molecular cloud G52.9+0.1. NuSTAR and Chandra
observations detected a variable X-ray point source within the HAWC error
circle, potentially associated with a bright IR source. The X-ray spectra can
be fitted with an absorbed power-law model with cm and and exhibit
long-term X-ray flux variability over the last decade. If the X-ray source,
possibly associated with the IR source (likely an O star), is the counterpart
of the HAWC source, it may be a new TeV gamma-ray binary powered by collisions
between the pulsar wind and stellar wind. Follow-up X-ray observations are
warranted to search for diffuse X-ray emission and determine the nature of the
HAWC source.Comment: accepted to ApJ, 8 pages, 7 figure
Broadband X-ray Imaging and Spectroscopy of the Crab Nebula and Pulsar with NuSTAR
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of
the Crab nebula and pulsar. We show that while the phase-averaged and spatially
integrated nebula + pulsar spectrum is a power-law in this energy band,
spatially resolved spectroscopy of the nebula finds a break at 9 keV in
the spectral photon index of the torus structure with a steepening
characterized by . We also confirm a previously reported
steepening in the pulsed spectrum, and quantify it with a broken power-law with
break energy at 12 keV and . We present spectral
maps of the inner 100\as\ of the remnant and measure the size of the nebula as
a function of energy in seven bands. These results find that the rate of
shrinkage with energy of the torus size can be fitted by a power-law with an
index of , consistent with the predictions of Kennel
and Coroniti (1984). The change in size is more rapid in the NW direction,
coinciding with the counter-jet where we find the index to be a factor of two
larger. NuSTAR observed the Crab during the latter part of a -ray
flare, but found no increase in flux in the 3 - 78 keV energy band
High-Energy X-ray Imaging of the Pulsar Wind Nebula MSH~15-52: Constraints on Particle Acceleration and Transport
We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the
hard X-ray band (>8 keV), as measured with the Nuclear Spectroscopic Telescope
Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the
3-7 keV band is similar to that seen in Chandra high-resolution imaging.
However, the spatial extent decreases with energy, which we attribute to
synchrotron energy losses as the particles move away from the shock. The
hard-band maps show a relative deficit of counts in the northern region towards
the RCW 89 thermal remnant, with significant asymmetry. We find that the
integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a
spectral break at 6 keV which may be explained by a break in the
synchrotron-emitting electron distribution at ~200 TeV and/or imperfect cross
calibration. We also measure spatially resolved spectra, showing that the
spectrum of the PWN softens away from the central pulsar B1509-58, and that
there exists a roughly sinusoidal variation of spectral hardness in the
azimuthal direction. We discuss the results using particle flow models. We find
non-monotonic structure in the variation with distance of spectral hardness
within 50" of the pulsar moving in the jet direction, which may imply particle
and magnetic-field compression by magnetic hoop stress as previously suggested
for this source. We also present 2-D maps of spectral parameters and find an
interesting shell-like structure in the NH map. We discuss possible origins of
the shell-like structure and their implications.Comment: 15 pages, 9 figures, accepted for publication in Ap
A Spatially Resolved Study of the Synchrotron Emission and Titanium in Tycho's Supernova Remnant with NuSTAR
We report results from deep observations (~750 ks) of Tycho's supernova
remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over
several energy bands to identify the regions producing the hardest X-rays and
to search for radioactive decay line emission from 44Ti. We find that the
hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where
recent Chandra observations have revealed high emissivity "stripes" associated
with particles accelerated to the knee of the cosmic-ray spectrum. We do not
find evidence of 44Ti, and we set limits on its presence and distribution
within the SNR. These limits correspond to a upper-limit 44Ti mass of M44 <
2.4x10^-4 M_sun for a distance of 2.3 kpc. We perform spatially resolved
spectroscopic analysis of sixty-six regions across Tycho. We map the best-fit
rolloff frequency of the hard X-ray spectra, and we compare these results to
measurements of the shock expansion and ambient density. We find that the
highest energy electrons are accelerated at the lowest densities and in the
fastest shocks, with a steep dependence of the roll-off frequency with shock
velocity. Such a dependence is predicted by models where the maximum energy of
accelerated electrons is limited by the age of the SNR rather than by
synchrotron losses, but this scenario requires far lower magnetic field
strengths than those derived from observations in Tycho. One way to reconcile
these discrepant findings is through shock obliquity effects, and future
observational work is necessary to explore the role of obliquity in the
particle acceleration process.Comment: 12 pages, 12 figures, ApJ in pres
Selection of Reference Genes for RT-qPCR Analysis in Coccinella septempunctata to Assess Un-intended Effects of RNAi Transgenic Plants
The development of genetically engineered plants that employ RNA interference (RNAi) to suppress invertebrate pests opens up new avenues for insect control. While this biotechnology shows tremendous promise, the potential for both non-target and off-target impacts, which likely manifest via altered mRNA expression in the exposed organisms, remains a major concern. One powerful tool for the analysis of these un-intended effects is reverse transcriptase-quantitative polymerase chain reaction, a technique for quantifying gene expression using a suite of reference genes for normalization. The seven-spotted ladybeetle Coccinella septempunctata, a commonly used predator in both classical and augmentative biological controls, is a model surrogate species used in the environmental risk assessment (ERA) of plant incorporated protectants (PIPs). Here, we assessed the suitability of eight reference gene candidates for the normalization and analysis of C. septempunctata v-ATPase A gene expression under both biotic and abiotic conditions. Five computational tools with distinct algorisms, geNorm, Normfinder, BestKeeper, the ΔCt method, and RefFinder, were used to evaluate the stability of these candidates. As a result, unique sets of reference genes were recommended, respectively, for experiments involving different developmental stages, tissues, and ingested dsRNAs. By providing a foundation for standardized RT-qPCR analysis in C. septempunctata, our work improves the accuracy and replicability of the ERA of PIPs involving RNAi transgenic plants
The Hard X-Ray View of the Young Supernova Remnant G1.9+0.3
NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky
Way, for 350 ks and detected emission up to 30 keV. The remnant's X-ray
morphology does not change significantly across the energy range from 3 to 20
keV. A combined fit between NuSTAR and CHANDRA shows that the spectrum steepens
with energy. The spectral shape can be well fitted with synchrotron emission
from a power-law electron energy distribution with an exponential cutoff with
no additional features. It can also be described by a purely phenomenological
model such as a broken power-law or a power-law with an exponential cutoff,
though these descriptions lack physical motivation. Using a fixed radio flux at
1 GHz of 1.17 Jy for the synchrotron model, we get a column density of N = cm, a spectral index of
, and a roll-off frequency of Hz. This can be explained by particle
acceleration, to a maximum energy set by the finite remnant age, in a magnetic
field of about 10 G, for which our roll-off implies a maximum energy of
about 100 TeV for both electrons and ions. Much higher magnetic-field strengths
would produce an electron spectrum that was cut off by radiative losses, giving
a much higher roll-off frequency that is independent of magnetic-field
strength. In this case, ions could be accelerated to much higher energies. A
search for Ti emission in the 67.9 keV line results in an upper limit of
assuming a line width of 4.0 keV (1 sigma).Comment: 9 pages, 6 figures, accepted Ap
Si3AlP: A new promising material for solar cell absorber
First-principles calculations are performed to study the structural and
optoelectronic properties of the newly synthesized nonisovalent and
lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc.
2011, 133, 16212.] We find that the ordered CC-Si3AlP with a basic unit of one
P atom surrounded by three Si atoms and one Al atom is the most stable one
within the experimentally observed unit cell.1 Si3AlP has a larger fundamental
band gap and a smaller direct band gap than Si, thus it has much higher
absorption in the visible light region. The calculated properties of Si3AlP
suggest that it is a promising candidate for improving the performance of the
existing Si-based solar cells. The understanding on the stability and band
structure engineering obtained in this study is general and can be applied for
future study of other nonisovalent and lattice-matched semiconductor alloys
- …
