55 research outputs found

    Search for Cooper-pair Fluctuations in Severely Underdoped YBCO Films

    Get PDF
    The preformed-pairs theory of pseudogap physics in high-TCT_C superconductors predicts a nonanalytic TT-dependence for the abab-plane superfluid fraction, ρS\rho_S, at low temperatures in underdoped cuprates. We report high-precision measurements of ρS(T)\rho_S(T) on severely underdoped YBa2_2Cu3_3O6+x_{6+x} and Y0.8_{0.8}Ca0.2_{0.2}Ba2_2Cu3_3O6+x_{6+x} films. At low TT, ρS\rho_S looks more like 1T21 - T^2 than 1T3/21 - T^{3/2}, in disagreement with theory.Comment: 3 pages, 2 figure

    Anomalously Sharp Superconducting Transitions in Overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} Films

    Get PDF
    We present measurements of abab-plane resistivity ρab(T)\rho_{ab}(T) and superfluid density [λ2\propto \lambda^{-2}, λ\lambda = magnetic penetration depth] in La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} films. As Sr concentration xx exceeds about 0.22, the superconducting transition sharpens dramatically, becoming as narrow as 200 mK near the super-to-normal metal quantum critical point. At the same time, ρab(T)\rho_{ab}(T), λ2(T)\lambda^{-2}(T), and transition temperature TcT_c decrease, and upward curvature develops in λ2(T)\lambda^{-2}(T). Given the sharp transitions, we interpret these results in the context of a homogeneous d-wave superconducting state, with elastic scattering that is enhanced relative to underdoped LSCO due to weaker electron correlations. This interpretation conflicts with the viewpoint that the overdoped state is inhomogeneous due to phase separation into superconducting and normal metal regions.Comment: 21 pages including 3 figures and 56 references. This version includes responses to referees and slight correction of data on two films. Conclusions the same as befor

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, TT^{\ast} remained unchanged. The unusual field dependence of TT^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Stability Analysis for Impulsive Systems: 2D Vector Lyapunov Function Approach

    Get PDF
    This paper contributes to the stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. The result is illustrated for the exponential stability of linear impulsive systems based on LMIs. The obtained results provide some notions of minimum and maximum dwell-time. Some examples illustrate the feasibility of the proposed approach

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    Stability analysis of networked control systems using a switched linear systems approach.

    Get PDF
    Abstract. In this paper, we study the stability of Networked Control Systems (NCSs) that are subject to time-varying transmission intervals and communication constraints in the sense that, per transmission, only one node can access the network and send its information. The order in which nodes send their information is dictated by a network protocol, such as the well-known Round Robin (RR) or Try-Once-Discard (TOD) protocol. Focussing on linear plants and linear continuous-time or discrete-time controllers, we model the NCS with time-varying transmission intervals as a discrete-time switched linear uncertain system. We obtain bounds for the allowable range of transmission intervals in terms of both minimal and maximal allowable transmission intervals. Hereto, a new convex overapproximation of the uncertain switched system is proposed, using a polytopic system with norm-bounded uncertainty, and new stability results for this class of hybrid systems are developed. On the benchmark example of a batch reactor, we explicitly exploit the linearity of the system, leading to a significant reduction in conservatism with respect to the existing approaches

    Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin cuprate films

    Full text link
    A central issue in the physics of high temperature superconductors is to understand superconductivity within a single copper-oxide layer or bilayer, the fundamental structural unit in the cuprates, and how it is lost with underdoping. As mobile holes are removed from the CuO_2 planes, the transition temperature T_C and superfluid density n_S decrease in a surprisingly correlated fashion in crystals and thick films. We seek to elucidate the intrinsic physics of bilayers in the strongly underdoped regime, near the critical doping level where superconductivity disappears. We report measurements of n_S(T) in films of Y_{1-x}Ca_xBa_2Cu_3O_{7-\delta} as thin as two copper-oxide bilayers with T_C's as low as 3 K. In addition to seeing the two-dimensional (2D) Kosterlitz-Thouless-Berezinski transition at T_C, we observe a remarkable scaling of T_C with n_S(0) that demonstrates that the disappearance of superconductivity with underdoping is due to quantum fluctuations near a T = 0 2D quantum critical point.Comment: 13 pages, 2 figur

    Stability Analysis for Impulsive Systems: 2D Vector Lyapunov Function Approach

    No full text
    This paper contributes to the stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. The result is illustrated for the exponential stability of linear impulsive systems based on LMIs. The obtained results provide some notions of minimum and maximum dwell-time. Some examples illustrate the feasibility of the proposed approach
    corecore