5,329 research outputs found
Shaping the surface of Borofloat 33 glass with ultrashort laser pulses and a spatial light modulator
Factors affecting mortality in late stage Parkinson’s Disease
To determine the effect of dysphagia and hospital admissions on mortality in late stage Parkinson’s disease
Inclusion of seasonal variation in river system microbial communities and phototroph activity increases environmental relevance of laboratory chemical persistence tests
Regulatory tests assess crop protection product environmental fate and toxicity before approval for commercial use. Although globally applied laboratory tests can assess biodegradation, they lack environmental complexity. Microbial communities are subject to temporal and spatial variation, but there is little consideration of these microbial dynamics in the laboratory. Here, we investigated seasonal variation in the microbial composition of water and sediment from a UK river across a two-year time course and determined its effect on the outcome of water-sediment (OECD 308) and water-only (OECD 309) biodegradation tests, using the fungicide isopyrazam. These OECD tests are performed under dark conditions, so test systems incubated under non-UV light:dark cycles were also included to determine the impact on both inoculum characteristics and biodegradation. Isopyrazam degradation was faster when incubated under non-UV light at all collection times in water-sediment microcosms, suggesting that phototrophic communities can metabolise isopyrazam throughout the year. Degradation rate varied seasonally between inoculum collection times only in microcosms incubated in the light, but isopyrazam mineralisation to 14CO2 varied seasonally under both light and dark conditions, suggesting that heterotrophic communities may also play a role in degradation. Bacterial and phototroph communities varied across time, but there was no clear link between water or sediment microbial composition and variation in degradation rate. During the test period, inoculum microbial community composition changed, particularly in non-UV light incubated microcosms. Overall, we show that regulatory test outcome is not influenced by temporal variation in microbial community structure; however, biodegradation rates from higher tier studies with improved environmental realism, e.g. through addition of non-UV light, may be more variable. These data suggest that standardised OECD tests can provide a conservative estimate of pesticide persistence end points and that additional tests including non-UV light could help bridge the gap between standard tests and field studies
The Mid-IR Spectral Effects of Darkening Agents and Porosity on the Silicate Surface Features of Airless Bodies
We systematically measured the mid-IR spectra of different mixtures of three silicates (antigorite, lizardite, and pure silica) with varying effective porosities and amounts of darkening agent (iron oxide and carbon). These spectra have broad implications for interpretation of current and future mission data for airless bodies, as well as for testing the capabilities of new instruments. Serpentines, such as antigorite and lizardite, are common to airless surfaces, and their mid-IR spectra in the presence of darkening agents and different surface porosities would be typical for those measured by spacecraft. Silica has only been measured in the plumes of Enceladus and presents exciting possibilities for other Saturn-system surfaces due to long range transport of E-ring material. Results show that the addition of the IR-transparent salt, KBr, to simulate surface porosity affected silicate spectra in ways that were not predictable from linear mixing models. The strengthening of silicate bands with increasing pore space, even when only trace amounts of KBr were added, indicates that spectral features of porous surfaces are more detectable in the mid-IR. Combining iron oxide with the pure silicates seemed to flatten most of the silicate features, but strengthened the reststrahlen band of the silica. Incorporating carbon with the silicates weakened all silicate features, but the silica bands were more resistant to being diminished, indicating silica may be more detectable in the mid-IR than the serpentines. We show how incorporating darkening agents and porosity provides a more complete explanation of the mid-IR spectral features previously reported on worlds such as Iapetus
Exciting dark matter in the galactic center
We reconsider the proposal of excited dark matter (DM) as an explanation for
excess 511 keV gamma rays from positrons in the galactic center. We
quantitatively compute the cross section for DM annihilation to nearby excited
states, mediated by exchange of a new light gauge boson with off-diagonal
couplings to the DM states. In models where both excited states must be heavy
enough to decay into e^+ e^- and the ground state, the predicted rate of
positron production is never large enough to agree with observations, unless
one makes extreme assumptions about the local circular velocity in the Milky
Way, or alternatively if there exists a metastable population of DM states
which can be excited through a mass gap of less than 650 keV, before decaying
into electrons and positrons.Comment: Dedicated to the memory of Lev Kofman; 16 pages, 9 figures; v3 added
refs, minor changes, accepted to PR
E-cigarette use among women of reproductive age: Impulsivity, cigarette smoking status, and other risk factors.
INTRODUCTION: The study aim was to examine impulsivity and other risk factors for e-cigarette use among women of reproductive age comparing current daily cigarette smokers to never cigarette smokers. Women of reproductive age are of special interest because of the additional risk that tobacco and nicotine use represents should they become pregnant.
METHOD: Survey data were collected anonymously online using Amazon Mechanical Turk in 2014. Participants were 800 women ages 24-44years from the US. Half (n=400) reported current, daily smoking and half (n=400) reported smokingsociodemographics, tobacco/nicotine use, and impulsivity (i.e., delay discounting & Barratt Impulsiveness Scale). Predictors of smoking and e-cigarette use were examined using logistic regression.
RESULTS: Daily cigarette smoking was associated with greater impulsivity, lower education, past illegal drug use, and White race/ethnicity. E-cigarette use in the overall sample was associated with being a cigarette smoker and greater education. E-cigarette use among current smokers was associated with increased nicotine dependence and quitting smoking; among never smokers it was associated with greater impulsivity and illegal drug use. E-cigarette use was associated with hookah use, and for never smokers only with use of cigars and other nicotine products.
CONCLUSIONS: E-cigarette use among women of reproductive age varies by smoking status, with use among current smokers reflecting attempts to quit smoking whereas among non-smokers use may be a marker of a more impulsive repertoire that includes greater use of alternative tobacco products and illegal drugs
Identifying network communities with a high resolution
Community structure is an important property of complex networks. An
automatic discovery of such structure is a fundamental task in many
disciplines, including sociology, biology, engineering, and computer science.
Recently, several community discovery algorithms have been proposed based on
the optimization of a quantity called modularity (Q). However, the problem of
modularity optimization is NP-hard, and the existing approaches often suffer
from prohibitively long running time or poor quality. Furthermore, it has been
recently pointed out that algorithms based on optimizing Q will have a
resolution limit, i.e., communities below a certain scale may not be detected.
In this research, we first propose an efficient heuristic algorithm, Qcut,
which combines spectral graph partitioning and local search to optimize Q.
Using both synthetic and real networks, we show that Qcut can find higher
modularities and is more scalable than the existing algorithms. Furthermore,
using Qcut as an essential component, we propose a recursive algorithm, HQcut,
to solve the resolution limit problem. We show that HQcut can successfully
detect communities at a much finer scale and with a higher accuracy than the
existing algorithms. Finally, we apply Qcut and HQcut to study a
protein-protein interaction network, and show that the combination of the two
algorithms can reveal interesting biological results that may be otherwise
undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at
http://cic.cs.wustl.edu/qcut/supplemental.pd
Investigating physical and cognitive changes over two years in patients with moderate to late stage Parkinson’s Disease in Northumbria
Investigation of the Gravitational Potential Dependence of the Fine-Structure Constant Using Atomic Dysprosium
Radio-frequency E1 transitions between nearly degenerate, opposite parity
levels of atomic dysprosium were monitored over an eight month period to search
for a variation in the fine-structure constant. During this time period, data
were taken at different points in the gravitational potential of the Sun. The
data are fitted to the variation in the gravitational potential yielding a
value of for the fit parameter . This
value gives the current best laboratory limit. In addition, our value of
combined with other experimental constraints is used to extract
the first limits on k_e and k_q. These coefficients characterize the variation
of m_e/m_p and m_q/m_p in a changing gravitational potential, where m_e, m_p,
and m_q are electron, proton, and quark masses. The results are and .Comment: 6 pages, 3 figure
- …
