467 research outputs found

    NORAD Tracking of the February 2022 Starlink Satellites (and the Possible Immediate Loss of 32 Satellites)

    Full text link
    The North American Aerospace Defense Command (NORAD) tracking of the SpaceX Starlink satellite launch on February 03, 2022 is reviewed. Of the 49 Starlink satellites released into orbit, 38 were eventually lost. Thirty-two of the satellites were never tracked by NORAD. There have been three articles written proposing physical mechanisms to explain the satellite losses. It is argued that none of the proposed mechanisms can explain the immediate loss of 32 of the 49 satellites. The non-availability of telemetry data from the lost satellites has hindered the search for a physical mechanism to explain the density increase observed in a short time interval.Comment: 23 pages, 5 figures, 1 table. arXiv admin note: text overlap with arXiv:2210.0790

    Spontaneous Blinks Activate the Precuneus: Characterizing Blink-Related Oscillations Using Magnetoencephalography

    Get PDF
    Spontaneous blinking occurs 15–20 times per minute. Although blinking has often been associated with its physiological role of corneal lubrication, there is now increasing behavioral evidence suggesting that blinks are also modulated by cognitive processes such as attention and information processing. Recent low-density electroencephalography (EEG) studies have reported so-called blink-related oscillations (BROs) associated with spontaneous blinking at rest. Delta-band (0.5–4 Hz) BROs are thought to originate from the precuneus region involved in environmental monitoring and awareness, with potential clinical utility in evaluation of disorders of consciousness. However, the neural mechanisms of BROs have not been elucidated. Using magnetoencephalography (MEG), we characterized delta-band BROs in 36 healthy individuals while controlling for background brain activity. Results showed that, compared to pre-blink baseline, delta-band BROs resulted in increased global field power (p < 0.001) and time-frequency spectral power (p < 0.05) at the sensor level, peaking at ∼250 ms post-blink maximum. Source localization showed that spontaneous blinks activated the bilateral precuneus (p < 0.05 FWE), and source activity within the precuneus was also consistent with sensor-space results. Crucially, these effects were only observed in the blink condition and were absent in the control condition, demonstrating that results were due to spontaneous blinks rather than as part of the inherent brain activity. The current study represents the first MEG examination of BROs. Our findings suggest that spontaneous blinks activate the precuneus regions consistent with environmental monitoring and awareness, and provide important neuroimaging support for the cognitive role of spontaneous blinks

    Multimodal Characterization of the Semantic N400 Response within a Rapid Evaluation Brain Vital Sign Framework

    Get PDF
    Background: For nearly four decades, the N400 has been an important brainwave marker of semantic processing. It can be recorded non-invasively from the scalp using electrical and/or magnetic sensors, but largely within the restricted domain of research laboratories specialized to run specifc N400 experiments. However, there is increasing evidence of signifcant clinical utility for the N400 in neurological evaluation, particularly at the individual level. To enable clinical applications, we recently reported a rapid evaluation framework known as “brain vital signs” that successfully incorporated the N400 response as one of the core components for cognitive function evaluation. The current study characterized the rapidly evoked N400 response to demonstrate that it shares consistent features with traditional N400 responses acquired in research laboratory settings—thereby enabling its translation into brain vital signs applications. Methods: Data were collected from 17 healthy individuals using magnetoencephalography (MEG) and electroencephalography (EEG), with analysis of sensor-level efects as well as evaluation of brain sources. Individual-level N400 responses were classifed using machine learning to determine the percentage of participants in whom the response was successfully detected. Results: The N400 response was observed in both M/EEG modalities showing signifcant diferences to incongruent versus congruent condition in the expected time range (p<0.05). Also as expected, N400-related brain activity was observed in the temporal and inferior frontal cortical regions, with typical left-hemispheric asymmetry. Classifcation robustly confrmed the N400 efect at the individual level with high accuracy (89%), sensitivity (0.88) and specifcity (0.90). Conclusion: The brain vital sign N400 characteristics were highly consistent with features of the previously reported N400 responses acquired using traditional laboratory-based experiments. These results provide important evidence supporting clinical translation of the rapidly acquired N400 response as a potential tool for assessments of higher cognitive functions

    Tuning the Photoresponse of Nano-Heterojunction: Pressure-Induced Inverse Photoconductance in Functionalized WO3 Nanocuboids

    Get PDF
    S.R. and S.S. contributed equally to this work. This work was mainly supported by the Natural Science Foundation of China (Grant No. 11874076), National Science Associated Funding (NSAF, Grant No. U1530402), and Science Challenging Program (Grant No. TZ2016001). D.E. thanks the financial support from Spanish MINECO under Grant No. MAT2016-75586-C4-1-P and from Generalitat Valenciana under Grant Prometeo/2018/123, EFIMAT. The X-ray diffraction measurements were performed at the BL15U1 station, Shanghai Synchrotron Radiation Facility (SSRF) in China. The HP XAS measurements were performed at 20 ID-C, APS, ANL. APS is supported by DOE-BES, under contract no. DE-AC02-06CH11357. The authors gratefully acknowledge Professor T. Irifune for providing the nanodiamonds for the HP XAS measurements, and K. Yang (SSRF), A. G. Li (SSRF), and C. J. Sun (APS) for their support in the in situ HP measurements.Inverse photoconductivity (IPC) is a unique photoresponse behavior that exists in few photoconductors in which electrical conductivity decreases with irradiation, and has great potential applications in the development of photonic devices and nonvolatile memories with low power consumption. However, it is still challenging to design and achieve IPC in most materials of interest. In this study, pressure-driven photoconductivity is investigated in n-type WO3 nanocuboids functionalized with p-type CuO nanoparticles under visible illumination and an interesting pressure-induced IPC accompanying a structural phase transition is found. Native and structural distortion induced oxygen vacancies assist the charge carrier trapping and favor the persistent positive photoconductivity beyond 6.4 GPa. The change in photoconductivity is mainly related to a phase transition and the associated changes in the bandgap, the trapping of charge carriers, the WO6 octahedral distortion, and the electron–hole pair recombination process. A unique reversible transition from positive to inverse photoconductivity is observed during compression and decompression. The origin of the IPC is intimately connected to the depletion of the conduction channels by electron trapping and the chromic property of WO3. This synergistic rationale may afford a simple and powerful method to improve the optomechanical performance of any hybrid material.Natural Science Foundation of China (Grant No. 11874076); National Science Associated Funding (NSAF, Grant No. U1530402); Science Challenging Program (Grant No. TZ2016001); Spanish MINECO MAT2016-75586-C4-1-P; Generalitat Valenciana under Grant Prometeo/2018/123, EFIMAT; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Good practices for a literature survey are not followed by authors while preparing scientific manuscripts

    Full text link
    The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with respect to the authors or the journals cited. In this paper, we advocate that authors should follow two mandatory principles to select papers (later reflected in the list of references) while studying the literature for a given research: i) consider similarity of content with the topics investigated, lest very related work should be reproduced or ignored; ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv repository to show that neither of these two criteria is fulfilled in practice

    Zellweger syndrome: Diagnostic assays, syndrome delineation, and potential therapy

    Full text link
    Patients with the cerebrohepatorenal syndrome of Zellweger lack peroxisomes and certain peroxisomal enzymes such as dihydroxyacetone phosphate acyltransferase in their tissues. Deficiency of this enzyme, which is necessary for glycerol ether lipid synthesis, provides a biochemical method for recognizing patients with subtle manifestations of Zellweger syndrome and suggests the utility of exogenous ether lipid precursors as a therapeutic strategy for these children. We describe the results of glycerol ether lipid supplementation to two children, one with classic Zellweger syndrome and 9% of control fibroblast dihydroxyacetone phosphate acyltransferase activity, and one with mild facial manifestations, wide sutures, hypotonia, developmental delay, hepatomegaly, peripheral retinal pigmentation, and 50% of control fibroblast dihydroxyacetone phosphate acyltransferase activity. An increase in erythrocyte plasmalogen levels following therapy was clearly demonstrated in the milder patient, and neither patient showed evidence of toxicity. Evaluation of therapy by comparison to the usual clinical course of Zellweger syndrome was not helpful because of the variability and incomplete documentation of 90 previously reported cases. The literature survey did provide criteria for classic Zellweger syndrome, which include hypotonia with or without deformation of limbs, large fontanels and split sutures, prominent forehead, flattened facial profile with hypoplastic supraorbital ridges, anteverted nares, highly arched palate, cryptorchidism or labial hypoplasia, hepatomegaly or elevated liver enzymes, peripheral pigmentation of the retina, renal cortical cysts, and characteristic neuropathology involving decreased myelinization, abnormal neuronal migration, and sudanophilic macrophages. Less severe patients, as exemplified by our case 2 and others from the literature, will not have all the classic features and can be recognized only by a growing panel of biochemical indicators. Our patient studies illustrate the complexity of designing comprehensive therapy for Zellweger-like conditions, suggest other diseases that may involve peroxisomal alterations, and emphasize the need for multicenter, collaborative studies to evaluate biochemical heterogeneity and therapy of peroxisomal disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38241/1/1320240109_ftp.pd

    Myopathy in an infant with a fatal peroxisomal disorder

    Full text link
    An infant with neonatal adrenoleukodystrophy experienced extreme hypotonia and virtually continuous convulsions at four months of age and died. Light and electron microscopic examination revealed evidence of myopathy and the presence of mitochondrial inclusions. Concentrations of very long-chain fatty acids were elevated in blood and fibroblasts and the oxidation of 14C-labeled fatty acids was defective. Urinary pipecolic acid content was increased. Activity of the peroxisomal dihydroxyacetone phosphate acyltransferase, which catalyzes the first step in plasmalogen synthesis, was decreased.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26173/1/0000252.pd

    Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast.</p> <p>Methods</p> <p>In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast.</p> <p>Results</p> <p>Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression.</p> <p>Conclusion</p> <p>The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells.</p

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    CEREBROSIDE GALACTOSIDASE: A METHOD FOR DETERMINATION AND A COMPARISON WITH OTHER LYSOSOMAL ENZYMES IN DEVELOPING RAT BRAIN 1

    Full text link
    (1) A method is described for assaying brain for cerebroside galactosidase activity. The enzyme was liberated by sonication and addition of sodium taurocholate, then by digestion with pancreatic enzymes. It was further purified by precipitation at pH 3. The enzyme was then incubated with an emulsion of galactose-labelled cerebroside in taurocholate and oleate at pH 4·5, and the liberated galactose was determined by scintillation counting. (2) The content of cerebroside galactosidase in rat brain at various ages has been determined. The enzyme was present before cerebroside appears in noticeable amounts (4 days) and the amount rose considerably during the period of active cerebroside deposition and myelination. The amount then remained at a high concentration even in the adult. (3) Comparison with other lysosomal brain enzymes was made in the age study. Nitrophenyl galactoside hydrolase also increased during myelination but levelled off earlier; its activity paralleled the amount of ganglioside. Nitrophenyl glucoside hydrolase started at a lower level and decreased with age. Sulphatase activity rose during myelination, then decreased somewhat after 15 days. Ceramidase followed a pattern similar to that of nitrophenyl galactoside hydrolase; it is suggested that both of these enzymes reflect ganglioside metabolism. (4) The relative amounts of brain enzymes in different states were determined as a function of age in the case of cerebrosidase, nitrophenyl galactoside hydrolase and sulphatase. The proportion found in the high speed supernatant fraction was low but increased after myelination. The proportion that could be ‘solubilized’ by sonication decreased after myelination but the values differed greatly for the three enzymes. This treatment solubilized one-seventh of the cerebrosidase, half the nitrophenyl galactosidase and three-quarters of the sulphatase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66425/1/j.1471-4159.1969.tb06849.x.pd
    • …
    corecore