2,671 research outputs found
Exploring attitudinal factors influencing modal shift:a latent class analysis of Danish commuters
Governments advocate for a modal shift from motorized transport modes to active modes. Various political approaches can be adopted to affect travel behavior and patterns. However, interventions spread across the entire population offer limited opportunities to achieve behavioral change. Furthermore, attitude has been shown to cut across demographic characteristics and strongly influence the conducted travel behavior. Therefore, a latent class analysis including significant sociodemographic variables and value-based attitudes concerning factors influencing transport, settlement, and additional priorities was performed. The study objectively identified five classes of Danish commuters with the same preconditions in terms of commuting distance but with clear differences in attitude and transport modes. Each latent class represents a unique combination of characteristics, which indicates the need to design target group-specific interventions to optimize the chances of influencing travel behavior. In particular, a group of malcontented motorists demonstrating a high intention to change exhibit negative feelings toward car travel and thus appear to act in contravention of their attitudes. In contrast, a class of immovable motorists was found, a class of beneficial commuters and finally two cycling dominated classes of passionate cyclists and environmentalist cyclists. Finally, this study has emphasized that similar attitudes can lead to dissimilar behaviors and that the same behavior can be exhibited for various reasons. We deduced how transport mode choice is influenced by various factors, with habit as one of the strongest, as those with strong habits seem disinclined to information about alternatives and call for âharderâ policy interventions. The findings emphasize the importance of targeted interventions tailored to specific commuter groups to encourage modal shifts towards sustainable transportation.</p
Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels
We consider laminar flow of incompressible electrolytes in long, straight
channels driven by pressure and electro-osmosis. We use a Hilbert space
eigenfunction expansion to address the general problem of an arbitrary cross
section and obtain general results in linear-response theory for the hydraulic
and electrical transport coefficients which satisfy Onsager relations. In the
limit of non-overlapping Debye layers the transport coefficients are simply
expressed in terms of parameters of the electrolyte as well as the geometrical
correction factor for the Hagen-Poiseuille part of the problem. In particular,
we consider the limits of thin non-overlapping as well as strongly overlapping
Debye layers, respectively, and calculate the corrections to the hydraulic
resistance due to electro-hydrodynamic interactions.Comment: 13 pages including 4 figures and 1 table. Typos corrected. Accepted
for NJ
Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients
Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (hαCGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of hαCGRP (2 Όg/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (Vmean) in the middle cerebral artery (MCA), as well as the heart rate and blood pressure, were the outcome parameters. No change of rCBF was observed at the end of infusion [1.2% ± 1.7 with hαCGRP, vs. â1.6% ± 3.1 with placebo (mean ± SD)] (P = 0.43). Vmean in MCA decreased to 13.5% ± 3.6 with hαCGRP versus 0.6% ± 1.8 with placebo (P < 0.005). Since rCBF was unchanged, this indicates a dilation of the MCA. hαCGRP induced a decrease in MAP (12%) (P < 0.005) and an increase in heart rate (58%) (P < 0.0001). CGRP dilates cerebral arteries, but the effect is so small that it is unlikely to be the only mechanism of CGRP-induced migraine
Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature
We investigate systems of nature where the common physical processes
diffusion and fragmentation compete. We derive a rate equation for the size
distribution of fragments. The equation leads to a third order differential
equation which we solve exactly in terms of Bessel functions. The stationary
state is a universal Bessel distribution described by one parameter, which fits
perfectly experimental data from two very different system of nature, namely,
the distribution of ice crystal sizes from the Greenland ice sheet and the
length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes
Nucleation of quark matter bubbles in neutron stars
The thermal nucleation of quark matter bubbles inside neutron stars is
examined for various temperatures which the star may realistically encounter
during its lifetime. It is found that for a bag constant less than a critical
value, a very large part of the star will be converted into the quark phase
within a fraction of a second. Depending on the equation of state for neutron
star matter and strange quark matter, all or some of the outer parts of the
star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not
included) available upon request from [email protected]
The Savvidy ``ferromagnetic vacuum'' in three-dimensional lattice gauge theory
The vacuum effective potential of three-dimensional SU(2) lattice gauge
theory in an applied color-magnetic field is computed over a wide range of
field strengths. The background field is induced by an external current, as in
continuum field theory. Scaling and finite volume effects are analyzed
systematically. The first evidence from lattice simulations is obtained of the
existence of a nontrivial minimum in the effective potential. This supports a
``ferromagnetic'' picture of gluon condensation, proposed by Savvidy on the
basis of a one-loop calculation in (3+1)-dimensional QCD.Comment: 9pp (REVTEX manuscript). Postscript figures appende
Naupliar and Metanaupliar development of Thysanoessa raschii (Malacostraca, Euphausiacea) from GodthÄbsfjord, Greenland, with a reinstatement of the ancestral status of the free-living Nauplius in Malacostracan evolution
The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status
Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes
We propose a dynamical scheme for the combined processes of fragmentation and
merging as a model system for cluster dynamics in nature and society displaying
scale invariant properties. The clusters merge and fragment with rates
proportional to their sizes, conserving the total mass. The total number of
clusters grows continuously but the full time-dependent distribution can be
rescaled over at least 15 decades onto a universal curve which we derive
analytically. This curve includes a scale free solution with a scaling exponent
of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure
Diffusion, Fragmentation and Coagulation Processes: Analytical and Numerical Results
We formulate dynamical rate equations for physical processes driven by a
combination of diffusive growth, size fragmentation and fragment coagulation.
Initially, we consider processes where coagulation is absent. In this case we
solve the rate equation exactly leading to size distributions of Bessel type
which fall off as for large -values. Moreover, we provide
explicit formulas for the expansion coefficients in terms of Airy functions.
Introducing the coagulation term, the full non-linear model is mapped exactly
onto a Riccati equation that enables us to derive various asymptotic solutions
for the distribution function. In particular, we find a standard exponential
decay, , for large , and observe a crossover from the Bessel
function for intermediate values of . These findings are checked by
numerical simulations and we find perfect agreement between the theoretical
predictions and numerical results.Comment: (28 pages, 6 figures, v2+v3 minor corrections
- âŠ