706 research outputs found

    Thermal fatigue tests of a radiative heat shield panel for a hypersonic transport

    Get PDF
    A pair of corrugation stiffened, beaded skin Rene 41 heat shield panels were exposed to 20,000 thermal cycles between room temperature and 1450 F to evaluate the thermal fatigue response of Rene 41 metallic heat shields for hypersonic cruise aircraft applications. At the conclusion of the tests, the panels retained substantial structural integrity; however, there were cracks and excessive wear in the vicinity of fastener holes and there was an 80-percent loss in ductility of the skin. Shrinkage of the panel which caused the cracks and wear must be considered in design of panels for Thermal Protection Systems (TPS) applications

    Multiwall/RSI concept for local application to space shuttle body flap

    Get PDF
    A titanium multiwall/reusable surface insulation (MW/RSI) TPS concept designed to prevent local erosion of the RSI tiles on the upper surface of the Space Shuttle Orbiter body flap was investigated. The concept, which consisted of a combination of a titanium multiwall tile and an RSI tile, was evaluated by thermal analysis and structural and thermal testing of one configuration to assess the attachment scheme and thermal behavior. Results indicate that the MW/RSI concept will remain attached to the vehicle and provide the required thermal protection

    Machine-assisted Cyber Threat Analysis using Conceptual Knowledge Discovery

    Get PDF
    Over the last years, computer networks have evolved into highly dynamic and interconnected environments, involving multiple heterogeneous devices and providing a myriad of services on top of them. This complex landscape has made it extremely difficult for security administrators to keep accurate and be effective in protecting their systems against cyber threats. In this paper, we describe our vision and scientific posture on how artificial intelligence techniques and a smart use of security knowledge may assist system administrators in better defending their networks. To that end, we put forward a research roadmap involving three complimentary axes, namely, (I) the use of FCA-based mechanisms for managing configuration vulnerabilities, (II) the exploitation of knowledge representation techniques for automated security reasoning, and (III) the design of a cyber threat intelligence mechanism as a CKDD process. Then, we describe a machine-assisted process for cyber threat analysis which provides a holistic perspective of how these three research axes are integrated together

    Granzyme K Activates Protease-Activated Receptor-1

    Get PDF
    Granzyme K (GrK) is a trypsin-like serine protease that is elevated in patients with sepsis and acute lung inflammation. While GrK was originally believed to function exclusively as a pro-apoptotic protease, recent studies now suggest that GrK may possess other non-cytotoxic functions. In the context of acute lung inflammation, we hypothesized that GrK induces pro-inflammatory cytokine release through the activation of protease-activated receptors. The direct effect of extracellular GrK on PAR activation, intracellular signaling and cytokine was assessed using cultured human lung fibroblasts. Extracellular GrK induced secretion of IL-6, IL-8 and MCP-1 in a dose- and time-dependent manner in lung fibroblasts. Heat-inactivated GrK did not induce cytokine release indicating that protease activity is required. Furthermore, GrK induced activation of both the ERK1/2 and p38 MAP kinase signaling pathways, and significantly increased fibroblast proliferation. Inhibition of ERK1/2 abrogated the GrK-mediated cytokine release. Through the use of PAR-1 and PAR-2 neutralizing antibodies, it was determined that PAR-1 is essential for GrK-induced IL-6, IL-8 and MCP-1 release. In summary, extracellular GrK is capable of activating PAR-1 and inducing fibroblast cytokine secretion and proliferation

    Efficient room-temperature magnetization direction detection by means of the enhanced anomalous Nernst effect in a Weyl ferromagnet

    Get PDF
    Spintronic phenomena exhibiting a longitudinal resistance change under magnetization reversal are a quite novel feature in nanoscience, which has been intensively studied in hopes of realizing all-electrical magnetization direction detection devices, where no reference ferromagnetic layer is required. However, cryogenic temperatures and/or high magnetic fields have been required to achieve noticeable effects. Here, the high heat-to-charge conversion efficiency of the Heusler alloy Weyl semimetal Co₂MnGa is exploited in single layer nanoscaled wires at room temperature to produce at least two orders of magnitude enhancement of the resistance change ratio, when compared with conventional ferromagnets. Such resistance change under magnetization reversal is consistently explained through temperature distribution simulations and direct thermoelectric measurements of the large anomalous Nernst effect (ANE) in this topologically nontrivial material. Although many reports consider ANE signals as perturbations or undesired artifacts, we demonstrate that they are dominant in this system and can be seized for nonvolatile memory readout, as shown in a prototype device. These results open up new horizons of using enhanced thermoelectric voltages in novel materials for magnetization direction detection in any system where significant temperature gradients exist
    corecore