3,505 research outputs found

    Allereinfachste Sätze. Kleine Narratologie der zeitgenössischen japanischen Literatur

    Full text link
    This article explores characteristic narrational contents, styles and structures of recent Japanese literature. Provided that narrational concepts of Heisei Literature have hardly been explored, I will argue that after Murakami Haruki was first published in the early 1980s, and with the paradigm shift from junbungaku to "J-Bungaku" in the late 1990s, Heisei Literature has consistently produced “superflat narratives”. An example for a superflat narration is Kawakami Hiromi’s “Furudōgu Nakano shōten” , translated into German in 2009. Kawakami’s text offers narrational flatness to a global readership that is indulging in the pleasures of the moratorium culture of contemporary Japan; the German version offers yet another aspect of narrational pleasures: the ethnolect “J-Deutsch” (J-German)

    Beyond the Brim of the Hat: Kinematics of Globular Clusters out to Large Radius in the Sombrero Galaxy

    Get PDF
    We have obtained radial velocity measurements for 51 new globular clusters around the Sombrero galaxy. These measurements were obtained using spectroscopic observations from the AAOmega spectrograph on the Anglo-Australian Telescope and the Hydra spectrograph at WIYN. Combined with our own past measurements and velocity measurements obtained from the literature we have constructed a large database of radial velocities that contains a total of 360 confirmed globular clusters. Previous studies' analyses of the kinematics and mass profile of the Sombrero globular cluster system have been constrained to the inner ~9' (~24 kpc or ~5 effective radii), but our new measurements have increased the radial coverage of the data, allowing us to determine the kinematic properties of M104 out to ~15' (~41 kpc or ~9 effective radii). We use our set of radial velocities to study the GC system kinematics and to determine the mass profile and V-band mass-to-light profile of the galaxy. We find that the V-band mass-to-light ratio increases from 4.5 at the center to a value of 20.9 at 41 kpc (~9 effective radii or 15'), which implies that the dark matter halo extends to the edge of our available data set. We compare our mass profile at 20 kpc (~4 effective radii or ~7.4') to the mass computed from x-ray data and find good agreement. We also use our data to look for rotation in the globular cluster system as a whole, as well as in the red and blue subpopulations. We find no evidence for significant rotation in any of these samples.Comment: Accepted for publication in the Astronomical Journal; 23 pages, 14 figures, and 2 table

    The Candidate Intermediate-Mass Black Hole in the Globular Cluster M54

    Get PDF
    Ibata et al. reported evidence for density and kinematic cusps in the Galactic globular cluster M54, possibly due to the presence of a 9400 solar-mass black hole. Radiative signatures of accretion onto M54's candidate intermediate-mass black hole (IMBH) could bolster the case for its existence. Analysis of new Chandra and recent Hubble Space Telescope astrometry rules out the X-ray counterpart to the candidate IMBH suggested by Ibata et al. If an IMBH exists in M54, then it has an Eddington ratio of L(0.3-8 keV) / L(Edd) < 1.4 x 10^(-10), more similar to that of the candidate IMBH in M15 than that in G1. From new imaging with the NRAO Very Large Array, the luminosity of the candidate IMBH is L(8.5 GHz) < 3.6 x 10^29 ergs/s (3 sigma). Two background active galaxies discovered toward M54 could serve as probes of its intracluster medium.Comment: 4 pages; 2 figures; emulateapj.cls; to appear in A

    MRK 1216 & NGC 1277 - An orbit-based dynamical analysis of compact, high velocity dispersion galaxies

    Get PDF
    We present a dynamical analysis to infer the structural parameters and properties of the two nearby, compact, high velocity dispersion galaxies MRK1216 & NGC1277. Combining deep HST imaging, wide-field IFU stellar kinematics, and complementary long-slit spectroscopic data out to 3 R_e, we construct orbit-based models to constrain their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole mass of log(Mbh/Msun) = 10.1(+0.1/-0.2) for NGC1277 and an upper limit of log(Mbh/Msun) = 10.0 for MRK1216, within 99.7 per cent confidence. The stellar mass-to-light ratios span a range of Upsilon_V = 6.5(+1.5/-1.5) in NGC1277 and Upsilon_H = 1.8(+0.5/-0.8) in MRK1216 and are in good agreement with SSP models of a single power-law Salpeter IMF. Even though our models do not place strong constraints on the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK1216, with a dark matter contribution of 22(+30/-20) per cent to the total mass budget within 1 R_e. NGC1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital structures of both galaxies, which are rotationally supported and consistent with photometric multi-S\'ersic decompositions, indicating that these compact objects do not host classical, non-rotating bulges formed during recent (z <= 2) dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC 1277 are anisotropic, with a global anisotropy parameter delta of 0.33 and 0.58, respectively. While MRK 1216 follows the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional plane of the order of beta_z = delta, NGC 1277 is highly tangentially anisotropic and seems to belong kinematically to a distinct class of objects.Comment: 27 pages, 15 figures and 4 tables. Accepted for publication in MNRA

    The Black Hole in the Compact, High-dispersion Galaxy NGC 1271

    Get PDF
    Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.Comment: accepted for publication in Ap

    Re-evaluating the role of natural killer cells in innate resistance to herpes simplex virus type 1

    Get PDF
    BACKGROUND: Interferon-γ acts to multiply the potency with which innate interferons (α/β) suppress herpes simplex virus type 1 (HSV-1) replication. Recent evidence suggests that this interaction is functionally relevant in host defense against HSV-1. However, it is not clear which WBCs of the innate immune system, if any, limit HSV-1 spread in an IFN-γ dependent manner. The current study was initiated to determine if natural killer (NK) cells provide innate resistance to HSV-1 infection, and if so to determine if this resistance is IFN-γ-dependent. RESULTS: Lymphocyte-deficient scid or rag2(-/- )mice were used to test four predictions of the central hypothesis, and thus determine if innate resistance to HSV-1 is dependent on 1. NK cell cytotoxicity, 2. NK cells, 3. WBCs, or 4. the IFN-activated transcription factor, Stat 1. Loss of NK cell cytotoxic function or depletion of NK cells had no effect on the progression of HSV-1 infection in scid mice. In contrast, viral spread and pathogenesis developed much more rapidly in scid mice depleted of WBCs. Likewise, loss of Stat 1 function profoundly impaired the innate resistance of rag2(-/- )mice to HSV-1. CONCLUSION: Lymphocyte-deficient mice possess a very tangible innate resistance to HSV-1 infection, but this resistance is not dependent upon NK cells

    DYNAMICS OF THE GALACTIC GLOBULAR CLUSTER NGC 3201

    Full text link
    B,V CCD frames have been used to derive surface brightness profiles for NGC 3201 out to ~18 arcmin. A total of 857 radial velocities with median precision ~1 km/s for 399 member giants have been used to trace the velocity dispersion profile out to 32' (the approximate tidal radius from fits of single-mass, isotropic King-Michie models to the cluster surface brightness profiles). The median difference in radial velocity for stars on either side of an imaginary axis moved through the cluster in 1 degree steps shows a significant maximum amplitude of 1.22+/-0.25 km/s. We discuss possible explanations of this result, including: (1) cluster rotation; (2) preferential stripping of stars on prograde orbits near the limiting radius; (3) the projection of the cluster space velocity onto the plane of the sky and (4) a slight drift in the velocity zero point. It is difficult to identify the primary cause of the observed velocity field structure unambiguously, and we suspect that all of the above processes may play a role. The B,V surface brightness profiles and radial velocities have been modeled with single- & multi-mass King-Michie models and nonparametric techniques. The density and M/L profiles show good agreement over 1.5<R<10 pc, and both approaches suggest a steady rise in M/L with distance from the cluster center. Due to the low cluster luminosity, we are unable to place useful constraints on the anisotropy of the velocity dispersion profile, though the global mass-to-light ratio is well-constrained by the models as ~2.0 +/-0.2 for the multi-mass and nonparametric models, compared to ~ 1.65 +/-0.15 for models having equal-mass stars. Our best-fit, multi-mass models have mass function slopes of x~0.75 +/-0.25, consistent with findings that mass function depends on the position relative to the potential of the Galaxy.Comment: uuencoded compressed Postscript, 59 pages including 10 figures. Also available at http://www.dao.nrc.ca/DAO/SCIENCE/science.htm

    The Magnitude-Size Relation of Galaxies out to z ~ 1

    Full text link
    As part of the Deep Extragalactic Evolutionary Probe (DEEP) survey, a sample of 190 field galaxies (I_{814} <= 23.5) in the ``Groth Survey Strip'' has been used to analyze the magnitude-size relation over the range 0.1 < z < 1.1. The survey is statistically complete to this magnitude limit. All galaxies have photometric structural parameters, including bulge fractions (B/T), from Hubble Space Telescope images, and spectroscopic redshifts from the Keck Telescope. The analysis includes a determination of the survey selection function in the magnitude-size plane as a function of redshift, which mainly drops faint galaxies at large distances. Our results suggest that selection effects play a very important role. A first analysis treats disk-dominated galaxies with B/T < 0.5. If selection effects are ignored, the mean disk surface brightness (averaged over all galaxies) increases by ~1.3 mag from z = 0.1 to 0.9. However, most of this change is plausibly due to comparing low luminosity galaxies in nearby redshift bins to high luminosity galaxies in distant bins. If this effect is allowed for, no discernible evolution remains in the disk surface brightness of bright (M_B < -19) disk-dominated galaxies. A second analysis treats all galaxies by substituting half-light radius for disk scale length, with similar conclusions. Indeed, at all redshifts, the bulk of galaxies is consistent with the magnitude-size envelope of local galaxies, i.e., with little or no evolution in surface brightness. In the two highest redshift bins (z > 0.7), a handful of luminous, high surface brightness galaxies appears that occupies a region of the magnitude-size plane rarely populated by local galaxies. Their wide range of colors and bulge fractions points to a variety of possible origins.Comment: 19 pages, 12 figures. Accepted for publication in the Astrophysical Journa
    corecore