907 research outputs found

    Nonlinear acoustic waves in channels with variable cross sections

    Full text link
    The point symmetry group is studied for the generalized Webster-type equation describing non-linear acoustic waves in lossy channels with variable cross sections. It is shown that, for certain types of cross section profiles, the admitted symmetry group is extended and the invariant solutions corresponding to these profiles are obtained. Approximate analytic solutions to the generalized Webster equation are derived for channels with smoothly varying cross sections and arbitrary initial conditions.Comment: Revtex4, 10 pages, 2 figure. This is an enlarged contribution to Acoustical Physics, 2012, v.58, No.3, p.269-276 with modest stylistic corrections introduced mainly in the Introduction and References. Several typos were also correcte

    Formation of system of support of development of small youth business

    Get PDF
    The results of the research of youth entrepreneurship problems have been adduced. Institutions and programs of its support have been considered. Measures to eliminate the identified problems of attracting young people to entrepreneurship have been recommended. The formation of a new program of support Β«Acceleration of youth entrepreneurshipΒ» and the creation of coordination centers in the subjects of the Russian Federation Β«Regional youth centerΒ» have been off red. The model of the system of support of small youth entrepreneurship, which will increase entrepreneurial activity among young people and create new jobs, has been presented

    Development of the A/H6N1 influenza vaccine candidate based on A/Leningrad/134/17/57 (H2N2) master donor virus and the genome composition analysis using high resolution melting (HRM)

    Get PDF
    The avian influenza viruses of H6N1subtype present a potential danger for humans. The cold-adapted (ca) reassortant influenza virus А/17/herring gull/Sarma/2006/887 (H6N1) was obtained in chicken embryos by the genetic reassortment based on the coldadapted A/Leningrad/134/17/57 (H2N2) master strain. The genome composition of the obtained reassortant was analyzed by means of real-time PCR with the high resolution melting (HRM) analysis using the intercalating fluorescent dye EvaGreen. Analysis of the gene segments showed that the reassortant А/17/herring gull/Sarma/2006/887 (H6N1) contains the internal proteins coding genes (PB2, PB1, PA, NP, M, and NS) of the master donor virus and the surface antigens coding genes of the A/herring gull/Sarma/51c/2006 (H6N1) avian influenza virus. The study of the phenotypic properties showed that the virus А/17/herring gull/Sarma/2006/887 (H6N1) is temperature sensitive (ts), ca in chicken embryos, and attenuated in mice when administered intranasally. This reassortant can be recommended as a live influenza vaccine candidate for humans.The avian influenza viruses of H6N1subtype present a potential danger for humans. The cold-adapted (ca) reassortant influenza virus А/17/herring gull/Sarma/2006/887 (H6N1) was obtained in chicken embryos by the genetic reassortment based on the coldadapted A/Leningrad/134/17/57 (H2N2) master strain. The genome composition of the obtained reassortant was analyzed by means of real-time PCR with the high resolution melting (HRM) analysis using the intercalating fluorescent dye EvaGreen. Analysis of the gene segments showed that the reassortant А/17/herring gull/Sarma/2006/887 (H6N1) contains the internal proteins coding genes (PB2, PB1, PA, NP, M, and NS) of the master donor virus and the surface antigens coding genes of the A/herring gull/Sarma/51c/2006 (H6N1) avian influenza virus. The study of the phenotypic properties showed that the virus А/17/herring gull/Sarma/2006/887 (H6N1) is temperature sensitive (ts), ca in chicken embryos, and attenuated in mice when administered intranasally. This reassortant can be recommended as a live influenza vaccine candidate for humans

    Very high frequency gravitational wave background in the universe

    Full text link
    Astrophysical sources of high frequency gravitational radiation are considered in association with a new interest to very sensitive HFGW receivers required for the laboratory GW Hertz experiment. A special attention is paid to the phenomenon of primordial black holes evaporation. They act like black body to all kinds of radiation, including gravitons, and, therefore, emit an equilibrium spectrum of gravitons during its evaporation. Limit on the density of high frequency gravitons in the Universe is obtained, and possibilities of their detection are briefly discussed.Comment: 14 page

    Wavelength and intensity dependence of multiple forward scattering at above-threshold ionization in mid-infrared strong laser fields

    Full text link
    The nonperturbative role of multiple forward scattering for Coulomb focusing in mid-infrared laser fields and its dependence on a laser intensity and wavelength are investigated for low-energy photoelectrons at above-threshold ionization. We show that high-order rescattering events can have comparable contributions to the Coulomb focusing and the effective number of rescattering depends weakly on laser parameters in the classical regime. However, the relative contribution of the forward scattering to the Coulomb focusing and the Coulomb focusing in total decrease with the rise of the laser intensity and wavelength

    Atmospheric Gravity Perturbations Measured by Ground-Based Interferometer with Suspended Mirrors

    Full text link
    A possibility of geophysical measurements using the large scale laser interferometrical gravitational wave antenna is discussed. An interferometer with suspended mirrors can be used as a gradiometer measuring variations of an angle between gravity force vectors acting on the spatially separated suspensions. We analyze restrictions imposed by the atmospheric noises on feasibility of such measurements. Two models of the atmosphere are invoked: a quiet atmosphere with a hydrostatic coupling of pressure and density and a dynamic model of moving region of the density anomaly (cyclone). Both models lead to similar conclusions up to numerical factors. Besides the hydrostatic approximation, we use a model of turbulent atmosphere with the pressure fluctuation spectrum f^{-7/3} to explore the Newtonian noise in a higher frequency domain (up to 10 Hz) predicting the gravitational noise background for modern gravitational wave detectors. Our estimates show that this could pose a serious problem for realization of such projects. Finally, angular fluctuations of spatially separated pendula are investigated via computer simulation for some realistic atmospheric data giving the level estimate 10^{-11} rad/sqrt(Hz) at frequency 10^{-4} Hz. This looks promising for the possibility of the measurement of weak gravity effects such as Earth inner core oscillations.Comment: 13 pages, 4 pigures, LaTeX. To be published in Classical and Quantum Gravit

    Расчёт ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости ΠΏΠΎ ВиккСрсу Π½Π° нСплоской повСрхности

    Get PDF
    The exact determination of Vickers HV hardness is important for determining of the product material mechanical properties. An important aspect of measuring HV is to obtain its values on a non-planar surface. Regulatory documents contain table values of correction factorsΒ KΒ which depend on the surface shape (convex or concave, spherical or cylindrical), its curvature (diameterΒ D) and hardness (arithmetic meanΒ dΒ of indentation diagonal lengths) but this does not solved the problem. TheΒ KΒ values forΒ d/DΒ ratios not given in the tables are determined by interpolation from the closest to the measured tabulatedΒ d/DΒ values. The error in the representation of these tabulatedΒ d/DΒ values is fully included in the error of determining theΒ KΒ coefficient for the measuredΒ d/DΒ ratio. The aim of the work was to simplify the calculation of correction factorsΒ KΒ for Vickers hardness measurements on non-planar surfaces and to reduce the calculation error compared to the methodology governed by the regulations.The method presented is based on a statistical analysis ofΒ KΒ coefficients, presented in regulatory documents for cases considered in the form of tables. The sufficiency of using of a quadratic power function for approximatingΒ K(d/D) dependences and the necessity of fulfilling the physically justified conditionΒ K ≑ 1 at zero curvature of tested surface have been substantiated. Simplification of calculation ofΒ KΒ coefficient and decrease of calculation error in comparison with the recommended in the regulatory documents obtaining ofΒ KΒ value by linear interpolation relative to two adjacent table values are shown.The reduction of the calculation error in comparison with the calculation recommended in the regulatory documents occurred because of the reason that when calculating by the developed formulas, the error in the value of the calculated for a specific value ofΒ d/DΒ coefficientΒ KΒ is averaged over all n values ofΒ d/DΒ given in the table of GOST for a given surface. That is, the error is reduced by a factor of about √n 2 in comparison with the calculation according to the regulated procedure. This is illustrated by the above numerical data and an example of the use of the method.The obtained formulas for calculation of correction coefficientsΒ KΒ when measuring hardness HV on spherical and cylindrical (concave and convex) surfaces are reasonable to use for automatic calculation of HV on items with a non-planar surface.Π’ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ твёрдости HV ΠΏΠΎ ВиккСрсу Π²Π°ΠΆΠ½ΠΎ для опрСдСлСния мСханичСских свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ. Π’Π°ΠΆΠ½Ρ‹ΠΌ аспСктом измСрСния HV являСтся ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΅Ρ‘ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° нСплоской повСрхности. Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β Πš, зависящих ΠΎΡ‚ Ρ„ΠΎΡ€ΠΌΡ‹ (выпуклая ΠΈΠ»ΠΈ вогнутая, сфСричСская ΠΈΠ»ΠΈ цилиндричСская) повСрхности, Π΅Ρ‘ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ (Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Β D) ΠΈ твёрдости (срСднСго арифмСтичСского dΒ Π΄Π»ΠΈΠ½ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΎΡ‚ΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°) Π½Π΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ. Π—Π½Π°Ρ‡Π΅Π½ΠΈΡΒ ΠšΒ Π΄Π»Ρ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉΒ d/D, Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π² Ρ‚Π°Π±Π»ΠΈΡ†Π°Ρ…, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ интСрполяциСй ΠΎΡ‚ Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… ΠΊ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠΌΡƒ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉΒ d/D. ΠŸΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ прСдставлСния этих Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉΒ d/DΒ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния искомого ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΒ d/D. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ расчёта ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β ΠšΒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости ΠΏΠΎ ВиккСрсу Π½Π° нСплоских повСрхностях ΠΈ сниТСниС ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° основана Π½Π° статистичСском Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β Πš, прСдставлСнных Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ… для рассмотрСнных случаСв Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»ΠΈΡ†. Обоснована Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ использования ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ стСпСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для аппроксимации Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚Π΅ΠΉΒ Πš(d/D) ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ выполнСния физичСски обоснованного ΡƒΡΠ»ΠΎΠ²ΠΈΡΒ ΠšΒ β‰‘ 1 ΠΏΡ€ΠΈ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Π΅ испытуСмой повСрхности. Показано ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ расчёта ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ ΠΈ сниТСниС ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡΒ ΠšΒ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяциСй ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Π²ΡƒΡ… сосСдних Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с расчётом, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ…, происходит Π·Π° счёт Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ расчётС ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π² Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ рассчитанного для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ значСния d/DΒ ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ ΡƒΡΡ€Π΅Π΄Π½ΡΠ΅Ρ‚ΡΡ ΠΏΠΎ всСм n значСниям d/D, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π“ΠžΠ‘Π’Π° для Π΄Π°Π½Π½ΠΎΠΉ повСрхности. Π’ΠΎ Π΅ΡΡ‚ΡŒ сниТаСтся ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² √n 2 Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с расчётом ΠΏΠΎ Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. Π­Ρ‚ΠΎ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ числСнныС Π΄Π°Π½Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ использования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчёта ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β ΠšΒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости HV Π½Π° сфСричСских ΠΈ цилиндричСских (Π²ΠΎΠ³Π½ΡƒΡ‚Ρ‹Ρ… ΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ…) повСрхностях цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для автоматичСского расчёта HV Π½Π° издСлиях с нСплоской ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ слоя стали

    Get PDF
    Highly loaded transmission gears are cemented and hardened. An important parameter of the hardened cemented layer is its effective thickness hef . Metal banding and the unavoidable instrumental error in hardness measuring have a great influence on the reliability of hefΒ determination. The purpose of this article was to develop a methodology to improve the reliability of determining of the effective thickness hefΒ of the hardened layer in steel after carburizing and quenching.The value of hefΒ is the distance h from the surface of the product to the hardness zone of 50 HRC. The article substantiates that approximation of hardness change from the distance h to the product surface will allow to obtain a more reliable dependence of hardness change in the investigated area when making hardness measurements in a wider range of distance h. Therefore, to increase the reliability of hef determination, results of the HV0.5 hardness measurement in an extended range of changes in h in the vicinity of the analyzed zone were used. The HV0.5 measurement results are converted to HRC hardness values using the formula recommended by the international standard. The HRC(h) distribution of HRC hardness values in the measurement area is interpolated by a second-degree polynomial which physically correctly reflects the change in metal hardness in the analyzed area. The resulting polynomial is used to determine of the distance hef at which the hardness takes on a value of 50 HRC. The methodology was used to determine the hefΒ of an 18KhGT steel gear wheel after carburizing and quenching. It is shown that results of two independent measurements of the hef sample differ from each other by 0.003 mm. This is significantly less than the permissible error of 0.02 mm of the hefΒ determination according to the standard technique. The error of hef determination is reduced by extending the range of variation of h and statistically valid interpolation of the monotonic change in hardness with the distance from the surface of the item in the measurement area. The developed method of determining the effective thickness hefΒ of the hardened steel layer consists in determining the distribution of its hardness in the expanded vicinity of the hef area, approximating the obtained dependence by a polynomial of the second degree and solving the square equation obtained with its use. The technique provides a significant reduction in the influence of the structural banding of the metal and the inevitable error in measuring hardness on the result of determining the hefΒ . Its application will allow to optimize the cementation regimes of gear wheels to increase their service life.ВысоконагруТСнныС Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Π΅ колёса трансмиссий ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠ΅. Π’Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ слоя являСтся Π΅Π³ΠΎ эффСктивная Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° hefΒ . Π‘ΠΎΠ»ΡŒΡˆΠΎΠ΅ влияниС Π½Π° Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ опрСдСлСния hefΒ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ»ΠΎΡΡ‡Π°Ρ‚ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ нСизбСТная ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ измСрСния твёрдости. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ достовСрности опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ hefΒ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ слоя Π² стали послС Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠΈ.Π—Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ hefΒ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ расстояниС h ΠΎΡ‚ повСрхности издСлия Π΄ΠΎ Π·ΠΎΠ½Ρ‹ с Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒΡŽ 50 HRC. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ обосновано, Ρ‡Ρ‚ΠΎ аппроксимация измСнСния твёрдости ΠΎΡ‚ расстояния h Π΄ΠΎ повСрхности издСлия ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ измСнСния твёрдости Π² исслСдуСмой Π·ΠΎΠ½Π΅ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ твёрдости Π² Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ расстояний h. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ достовСрности опрСдСлСния hefΒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния твёрдости HV0,5 Π² Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ h Π² окрСстности Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π·ΠΎΠ½Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния HV0,5 пСрСсчитаны Π² значСния твёрдости HRC ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ стандартом. РаспрСдСлСниС HRC(h) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ твёрдости HRC Π² области измСрСния ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни, физичСски Π²Π΅Ρ€Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ твёрдости ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π·ΠΎΠ½Π΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌ использован для опрСдСлСния расстояния hefΒ , ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 50 HRC. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° использована для опрСдСлСния hefΒ Π·ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠ³ΠΎ колСса ΠΈΠ· стали 18Π₯Π“Π’ послС Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠΈ. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π²ΡƒΡ… нСзависимых ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ hefΒ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° Π½Π° 0,003 ΠΌΠΌ. Π­Ρ‚ΠΎ сущСствСнно мСньшС допустимой ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ 0,02 ΠΌΠΌ опрСдСлСния hefΒ ΠΏΠΎ стандартной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. ΠŸΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния hef сниТСна Π·Π° счёт Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° измСнСния h ΠΈ статистичСски обоснованной интСрполяции ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ измСнСния твёрдости с расстояниСм ΠΎΡ‚ повСрхности издСлия Π² области измСрСния.Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ hefΒ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ слоя стали Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ распрСдСлСния Π΅Ρ‘ твёрдости Π² Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠΉ окрСстности области hefΒ , аппроксимации ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ зависимости ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ с Π΅Π³ΠΎ использованиСм ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° обСспСчиваСт сущСствСнноС сниТСниС влияния структурной полосчатости ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния твёрдости Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ опрСдСлСния hefΒ . Π•Ρ‘ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колёс для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ рСсурса ΠΈΡ… эксплуатации
    • …
    corecore