11,884 research outputs found

    The GTC exoplanet transit spectroscopy survey X. Stellar spots versus Rayleigh scattering: the case of HAT-P-11b

    Full text link
    Rayleigh scattering in a hydrogen-dominated exoplanet atmosphere can be detected from ground or space based telescopes, however, stellar activity in the form of spots can mimic Rayleigh scattering in the observed transmission spectrum. Quantifying this phenomena is key to our correct interpretation of exoplanet atmospheric properties. We obtained long-slit optical spectroscopy of two transits of HAT-P-11b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at Gran Telescopio Canarias (GTC) on August 30 2016 and September 25 2017. We integrated the spectrum of HAT-P-11 and one reference star in several spectroscopic channels across the λ∼\lambda\sim 400-785 nm region, creating numerous light curves of the transits. We fit analytic transit curves to the data taking into account the systematic effects and red noise present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/RsR_\mathrm{p}/R_\mathrm{s}) across wavelength. By fitting both transits together, we find a slope in the transmission spectrum showing an increase of the planetary radius towards blue wavelengths. A closer inspection to the transmission spectrum of the individual data sets reveals that the first transit presents this slope while the transmission spectrum of the second data set is flat. Additionally we detect hints of Na absorption in the first night, but not in the second. We conclude that the transmission spectrum slope and Na absorption excess found in the first transit observation are caused by unocculted stellar spots. Modeling the contribution of unocculted spots to reproduce the results of the first night we find a spot filling factor of δ=0.62−0.17+0.20\delta=0.62^{+0.20}_{-0.17} and a spot-to-photosphere temperature difference of ΔT=429−299+184\Delta T = 429^{+184}_{-299} K.Comment: Accepted for publication in Astronomy & Astrophysics, 13 page

    The GTC exoplanet transit spectroscopy survey. VII. Detection of sodium in WASP-52b's cloudy atmosphere

    Full text link
    We report the first detection of sodium absorption in the atmosphere of the hot Jupiter WASP-52b. We observed one transit of WASP-52b with the low-resolution Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the 10.4 m Gran Telescopio Canarias (GTC). The resulting transmission spectrum, covering the wavelength range from 522 nm to 903 nm, is flat and featureless, except for the significant narrow absorption signature at the sodium doublet, which can be explained by an atmosphere in solar composition with clouds at 1 mbar. A cloud-free atmosphere is stringently ruled out. By assessing the absorption depths of sodium in various bin widths, we find that temperature increases towards lower atmospheric pressure levels, with a positive temperature gradient of 0.88 +/- 0.65 K/km, possibly indicative of upper atmospheric heating and a temperature inversion.Comment: 6 pages, 5 figures, accepted for publication in A&A Lette

    Evolutionary prisoner's dilemma games with optional participation

    Full text link
    Competition among cooperators, defectors, and loners is studied in an evolutionary prisoner's dilemma game with optional participation. Loners are risk averse i.e. unwilling to participate and rather rely on small but fixed earnings. This results in a rock-scissors-paper type cyclic dominance of the three strategies. The players are located either on square lattices or random regular graphs with the same connectivity. Occasionally, every player reassesses its strategy by sampling the payoffs in its neighborhood. The loner strategy efficiently prevents successful spreading of selfish, defective behavior and avoids deadlocks in states of mutual defection. On square lattices, Monte Carlo simulations reveal self-organizing patterns driven by the cyclic dominance, whereas on random regular graphs different types of oscillatory behavior are observed: the temptation to defect determines whether damped, periodic or increasing oscillations occur. These results are compared to predictions by pair approximation. Although pair approximation is incapable of distinguishing the two scenarios because of the equal connectivity, the average frequencies as well as the oscillations on random regular graphs are well reproduced.Comment: 6 pages, 7 figure

    Detection of sodium in the atmosphere of WASP-69b

    Full text link
    Transit spectroscopy is one of the most commonly used methods to characterize exoplanets atmospheres. From the ground, these observations are very challenging due to the terrestrial atmosphere and its intrinsic variations, but high-spectral resolution observations overcome this difficulty by resolving the spectral lines and taking advantage of the different Doppler velocities of the Earth, the host star and the exoplanet. We analyze the transmission spectrum around the Na I doublet at 589 nm of the exoplanet WASP-69b, a hot Jupiter orbiting a K-type star with a period of 3.868 days, and compare the analysis to that of the well-know hot Jupiter HD 189733b. We also present the analysis of the Rossiter-McLaughlin effect for WASP-69b. Two transits of WASP-69b were observed with the HARPS-North spectrograph (R = 115 000) at the TNG telescope. We perform a telluric contamination subtraction based on the comparison between the observed spectra and a telluric water model. Then, the common steps of the differential spectroscopy are followed to extract the transmission spectrum. The method is tested with archival transit data of the extensively studied exoplanet HD 189733b, obtained with the HARPS-South spectrograph at ESO 3.6m telescope, and then applied to WASP-69b data. For HD 189733b, we spectrally resolve the Na I doublet and measure line contrasts of 0.72±0.05%0.72\pm0.05\% (D2) and 0.51±0.05%0.51\pm0.05\% (D1), and FWHMs of 0.64±0.040.64\pm0.04{\AA} (D2) and 0.60±0.060.60\pm0.06{\AA} (D1), in agreement with previously published results. A net blueshift of ∼0.04{\sim}0.04{\AA} is measured. For WASP-69b only the contrast of the D2 line is measured (5.8±0.3%5.8\pm0.3\%). Even if this corresponds to a detection at the 5σ5\sigma-level of excess absorption of 0.5±0.1%0.5\pm0.1\% in a passband of 1.51.5{\AA}, more transits are needed to fully characterize the lines profiles and retrieve accurate atmospheric properties.Comment: 15 pages, 14 figure

    The GTC exoplanet transit spectroscopy survey. VII. An optical transmission spectrum of WASP-48b

    Full text link
    We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/RsR_p/R_s) across wavelength. After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/RsR_p/R_s uncertainty values between 0.8×10−30.8 \times 10^{-3} and 1.5×10−31.5\times 10^{-3} for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include of TiO and VO.Comment: 8 pages, 8 figures. Accepted for publication in Astronomy and Astrophysic

    The GTC exoplanet transit spectroscopy survey. VI. A spectrally-resolved Rayleigh scattering slope in GJ 3470b

    Full text link
    Aims. As a sub-Uranus-mass low-density planet, GJ 3470b has been found to show a flat featureless transmission spectrum in the infrared and a tentative Rayleigh scattering slope in the optical. We conducted an optical transmission spectroscopy project to assess the impacts of stellar activity and to determine whether or not GJ 3470b hosts a hydrogen-rich gas envelop. Methods. We observed three transits with the low-resolution OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias, and one transit with the high-resolution UVES spectrograph at the 8.2 m Very Large Telescope. Results. From the high-resolution data, we find that the difference of the Ca II H+K lines in- and out-of-transit is only 0.67 +/- 0.22%, and determine a magnetic filling factor of about 10-15%. From the low-resolution data, we present the first optical transmission spectrum in the 435-755 nm band, which shows a slope consistent with Rayleigh scattering. Conclusions. After exploring the potential impacts of stellar activity in our observations, we confirm that Rayleigh scattering in an extended hydrogen/helium atmosphere is currently the best explanation. Further high-precision observations that simultaneously cover optical and infrared bands are required to answer whether or not clouds and hazes exist at high-altitude.Comment: 12 pages, 11 figures, accepted for publication in A&

    Percolation, depinning, and avalanches in capillary condensation of gases in disordered porous solids

    Full text link
    We propose a comprehensive theoretical description of hysteresis in capillary condensation of gases in mesoporous disordered materials. Applying mean-field density functional theory to a coarse-grained lattice-gas model, we show that the morphology of the hysteresis loops is influenced by out-of-equilibrium transitions that are different on filling and on draining. In particular, desorption may be associated to a depinning process and be percolation-like without explicit pore-blocking effects.Comment: 4 pages, 5 figure

    Entropically driven transition to a liquid-crystalline polymer globule

    Full text link
    A self-consistent-field theory (SCFT) in the grand canonical ensemble formulation is used to study transitions in a helix-coil multiblock copolymer globule. The helices are modeled as stiff rods. In addition to the established coil-globule transition we show for the first time that, even without explicit rod-rod alignment interaction, the system undergoes a transition to a nematic liquid-crystalline (LC) globular state. The LC-globule formation is driven by the hydrophobic helical segment attraction and the anisotropy of the globule surface energy. The full phase diagram of the copolymer was calculated. It discriminates between an open chain, amorphous globule and LC-globule. This model provides a relatively simple example of the interplay between secondary and tertiary structures in homopolypeptides. Moreover, it gives a simple explanation for the formation of helix bundles in certain globular proteins.Comment: 5 pages, 5 figures, submitted to Europhys. Let

    Influence of the temperature on the depinning transition of driven interfaces

    Full text link
    We study the dynamics of a driven interface in a two-dimensional random-field Ising model close to the depinning transition at small but finite temperatures T using Glauber dynamics. A square lattice is considered with an interface initially in (11)-direction. The drift velocity v is analyzed for the first time using finite size scaling at T = 0 and additionally finite temperature scaling close to the depinning transition. In both cases a perfect data collapse is obtained from which we deduce beta = 1/3 for the exponent which determines the dependence of v on the driving field, nu = 1 for the exponent of the correlation length and delta = 5 for the exponent which determines the dependence of v on T.Comment: 5 pages, Latex, Figures included, to appear in Europhys. Let
    • …
    corecore