6,330 research outputs found

    Flue-Cured Tobacco Developments Under the AAA

    Get PDF

    CO observations of the expanding envelope of IRC plus 10216

    Get PDF
    High-sensitivity emission profiles were observed for the transition of C12O16 and C13O16 towards IRC + or - 10216. It appears that the spherically symmetric uniform mass-outflow model proposed by Morris is necessary to describe the line profiles. The outflow appears to be slightly accelerated, having a velocity of 15 km/sec at the edges of the CO cloud, compared with 12 km/sec for the more centrally confined molecules

    The size and polydispersity of silica nanoparticles under simulated hot spring conditions

    Get PDF
    The nucleation and growth of silica nanoparticles in supersaturated geothermal waters was simulated using a flow-through geothermal simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature (T) and organic additives on the size and polydispersity of the forming silica nanoparticles was quantified. A decrease in temperature (58 to 33°C) and the addition of glucose restricted particle growth to sizes <20 nm, while varying [SiO2] or ISdid not affect the size (30-35 nm) and polydispersity (±9 nm) observed at 58°C. Conversely, the addition of xanthan gum induced the development of thin films that enhanced silica aggregation

    A Broad Search for Counterrotating Gas and Stars: Evidence for Mergers and Accretion

    Get PDF
    We measure the frequency of bulk gas-stellar counterrotation in a sample of 67 galaxies drawn from the Nearby Field Galaxy Survey, a broadly representative survey of the local galaxy population down to M_B-15. We detect 4 counterrotators among 17 E/S0's with extended gas emission (24% +8 -6). In contrast, we find no clear examples of bulk counterrotation among 38 Sa-Sbc spirals, although one Sa does show peculiar gas kinematics. This result implies that, at 95% confidence, no more than 8% of Sa-Sbc spirals are bulk counterrotators. Among types Sc and later, we identify only one possible counterrotator, a Magellanic irregular. We use these results together with the physical properties of the counterrotators to constrain possible origins for this phenomenon.Comment: 19 pages, 4 figures, AJ, accepte

    Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum

    Full text link
    Every completely positive map G that commutes which the Hamiltonian time evolution is an integral or sum over (densely defined) CP-maps G_\sigma where \sigma is the energy that is transferred to or taken from the environment. If the spectrum is non-degenerated each G_\sigma is a dephasing channel followed by an energy shift. The dephasing is given by the Hadamard product of the density operator with a (formally defined) positive operator. The Kraus operator of the energy shift is a partial isometry which defines a translation on R with respect to a non-translation-invariant measure. As an example, I calculate this decomposition explicitly for the rotation invariant gaussian channel on a single mode. I address the question under what conditions a covariant channel destroys superpositions between mutually orthogonal states on the same orbit. For channels which allow mutually orthogonal output states on the same orbit, a lower bound on the quantum capacity is derived using the Fourier transform of the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly specified. Presentation more detailed. Implementing the shift after the dephasing is sometimes more convenien

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    On the scattering theory of the classical hyperbolic C(n) Sutherland model

    Full text link
    In this paper we study the scattering theory of the classical hyperbolic Sutherland model associated with the C(n) root system. We prove that for any values of the coupling constants the scattering map has a factorized form. As a byproduct of our analysis, we propose a Lax matrix for the rational C(n) Ruijsenaars-Schneider-van Diejen model with two independent coupling constants, thereby setting the stage to establish the duality between the hyperbolic C(n) Sutherland and the rational C(n) Ruijsenaars-Schneider-van Diejen models.Comment: 15 page

    Continuum and Emission-Line Properties of Broad Absorption Line Quasars

    Full text link
    We investigate the continuum and emission-line properties of 224 broad absorption line quasars (BALQSOs) with 0.9<z<4.4 drawn from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR), which contains 3814 bona fide quasars. We find that low-ionization BALQSOs (LoBALs) are significantly reddened as compared to normal quasars, in agreement with previous work. High-ionization BALQSOs (HiBALs) are also more reddened than the average nonBALQSO. Assuming SMC-like dust reddening at the quasar redshift, the amount of reddening needed to explain HiBALs is E(B-V)~0.023 and LoBALs is E(B-V)~0.077 (compared to the ensemble average of the entire quasar sample). We find that there are differences in the emission-line properties between the average HiBAL, LoBAL, and nonBAL quasar. These differences, along with differences in the absorption line troughs, may be related to intrinsic quasar properties such as the slope of the intrinsic (unreddened) continuum; more extreme absorption properties are correlated with bluer intrinsic continua. Despite the differences among BALQSO sub-types and nonBALQSOs, BALQSOs appear to be drawn from the same parent population as nonBALQSOs when both are selected by their UV/optical properties. We find that the overall fraction of traditionally defined BALQSOs, after correcting for color-dependent selection effects due to different SEDs of BALQSO and nonBALQSOs, is 13.4+/-1.2% and shows no significant redshift dependence for 1.7<z<3.45. After a rough completeness correction for the effects of dust extinction, we find that approximately one in every six quasars is a BALQSO.Comment: 35 pages, 11 figures (1 color), 1 table; accepted by A

    Radio continuum properties of young planetary nebulae

    Get PDF
    We have selected a small sample of post-AGB stars in transition towards the planetary nebula and present new Very Large Array multi-frequency high-angular resolution radio observations of them. The multi-frequency data are used to create and model the targets' radio continuum spectra, proving that these stars started their evolution as very young planetary nebulae. In the optically thin range, the slopes are compatible with the expected spectral index (-0.1). Two targets (IRAS 18062+2410 and 17423-1755) seem to be optically thick even at high frequency, as observed in a handful of other post-AGB stars in the literature, while a third one (IRAS 20462+3416) shows a possible contribution from cold dust. In IRAS 18062+2410, where we have three observations spanning a period of four years, we detect an increase in its flux density, similar to that observed in CRL 618. High-angular resolution imaging shows bipolar structures that may be due to circumstellar tori, although a different hypothesis (i.e., jets) could also explain the observations. Further observations and monitoring of these sources will enable us to test the current evolutionary models of planetary nebulae.Comment: 8 pages, 3 figures, accepted for publication in MNRA
    corecore