46,349 research outputs found
A parallel algorithm for the enumeration of benzenoid hydrocarbons
We present an improved parallel algorithm for the enumeration of fixed
benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration
of B_h from the previous best h=35 up to h=50. Analysis of the associated
generating function confirms to a very high degree of certainty that and we estimate that the growth constant and the amplitude .Comment: 14 pages, 6 figure
Honeycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and
polygons on the honeycomb lattice, including series for metric properties such
as mean-squared radius of gyration as well as series for moments of the
area-distribution for polygons. Analysis of the series yields accurate
estimates for the connective constant, critical exponents and amplitudes of
honeycomb self-avoiding walks and polygons. The results from the numerical
analysis agree to a high degree of accuracy with theoretical predictions for
these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference
"Counting Complexity: An international workshop on statistical mechanics and
combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda
Thermal radiation analysis system TRASYS 2: User's manual
The Thermal Radiation Analyzer System (TRASYS) program put thermal radiation analysis on the same basis as thermal analysis using program systems such as MITAS and SINDA. The user is provided the powerful options of writing his own executive, or driver logic and choosing, among several available options, the most desirable solution technique(s) for the problem at hand. This User's Manual serves the twofold purpose of instructing the user in all applications and providing a convenient reference book that presents the features and capabilities in a concise, easy-to-find manner
Thermal radiation analysis system (TRASYS)
The Thermal Radiation Analysis System, TRASYS, is a digital computer software system with generalized capability to solve the radiation-related aspects of thermal analysis problems. When used in conjunction with a generalized thermal analyzer program any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (1) internode radiation interchange data; and (2) incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. One of the primary features of TRASYS is that it allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept
Hybrid Propulsion Technology Program
Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data
The Higgs mass derived from the U(3) Lie group
The Higgs mass value is derived from a Hamiltonian on the Lie group U(3)
where we relate strong and electroweak energy scales. The baryon states of
nucleon and delta resonances originate in specific Bloch wave degrees of
freedom coupled to a Higgs mechanism which also gives rise to the usual gauge
boson masses. The derived Higgs mass is around 125 GeV. From the same
Hamiltonian we derive the relative neutron to proton mass ratio and the N and
Delta mass spectra. All compare rather well with the experimental values. We
predict scarce neutral flavor baryon singlets that should be visible in
scattering cross sections for negative pions on protons, in photoproduction on
neutrons, in neutron diffraction dissociation experiments and in invariant mass
spectra of protons and negative pions in B-decays. The fundamental predictions
are based on just one length scale and the fine structure constant. More
particular predictions rely also on the weak mixing angle and the up-down quark
flavor mixing matrix element. With differential forms on the measure-scaled
wavefunction, we could generate approximate parton distribution functions for
the u and d valence quarks of the proton that compare well with established
experimental analysis.Comment: 18 pages, 13 figures, 3 table
Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings
We consider the gravitationally induced particle production from the quantum
vacuum which is defined by a free, massless and minimally coupled scalar field
during the formation of a gauge cosmic string. Previous discussions of this
topic estimate the power output per unit length along the string to be of the
order of ergs/sec/cm in the s-channel. We find that this production
may be completely suppressed. A similar result is also expected to hold for the
number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR
The effect of monomer evaporation on a simple model of submonolayer growth
We present a model for thin film growth by particle deposition that takes
into account the possible evaporation of the particles deposited on the
surface. Our model focuses on the formation of two-dimensional structures. We
find that the presence of evaporation can dramatically affect the growth
kinetics of the film, and can give rise to regimes characterized by different
``growth'' exponents and island size distributions. Our results are obtained by
extensive computer simulations as well as through a simple scaling approach and
the analysis of rate equations describing the system. We carefully discuss the
relationship of our model with previous studies by Venables and Stoyanov of the
same physical situation, and we show that our analysis is more general.Comment: 41 pages including figures, Revtex, to be published in Physical
Review
- …