1,200 research outputs found

    Quark Mass Hierarchies, Flavor Mixing and Maximal CP-Violation

    Get PDF
    Flavor mixing and the quark mass spectrum are intimately related. In view of the observed strong hierarchy of the quark and lepton masses and of the flavor mixing angles it is argued that the description of flavor mixing must take this into account. One particular interesting way to describe the flavor mixing emerges, which is particularly suited for models of quark mass matrices based on flavor symmetries. We conclude that the unitarity triangle important for BB physics should be close to or identical to a rectangular triangle. CPCP violation is maximal in this sense.Comment: 21 latex page

    Hierarchy and Anarchy in Quark Mass Matrices, or Can Hierarchy Tolerate Anarchy?

    Get PDF
    The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order.Comment: 11 pages, LaTeX, 3 figures, to be submitted to Phys. Lett. B. Abstract and Introduction changed to better reflect conclusion

    Implications of the KamLAND Measurement on the Lepton Flavor Mixing Matrix and the Neutrino Mass Matrix

    Get PDF
    We explore some important implications of the KamLAND measurment on the lepton flavor mixing matrix VV and the neutrino mass matrix MM. The model-independent constraints on nine matrix elements of VV are obtained to a reasonable degree of accuracy. We find that nine two-zero textures of MM are compatible with current experimental data, but two of them are only marginally allowed. Instructive predictions are given for the absolute neutrino masses, Majorana phases of CP violation, effective masses of the tritium beta decay and neutrinoless double beta decay.Comment: RevTex 15 pages (4 PS figures included

    1mb{1\over m_b} and 1mt{1\over m_t} Expansion of the Weak Mixing Matrix

    Full text link
    We perform a 1/mb1/m_b and 1/mt1/m_t expansion of the Cabibbo-Kobayashi- Maskawa mixing matrix. Data suggest that the dominant parts of the Yukawa couplings are factorizable into sets of numbers r>\vert r>, s>\vert s>, and s>\vert s'>, associated, respectively, with the left-handed doublets, the right-handed up singlets, and the right- handed down singlets. The first order expansion is consistent with Wolfenstein parameterization, which is an expansion in sinθcsin \theta _c to third order. The mixing matrix elements in the present approach are partitioned into factors determined by the relative orientations of r>\vert r>, s>\vert s>, and s>\vert s'> and the dynamics provided by the subdominant mass matrices. A short discussion is given of some experimental support and a generalized Fritzsch model is used to contrast our approach.Comment: A set of references has been added to ealier related wor

    Composite Weak Bosons, Leptons and Quarks

    Full text link
    The weak bosons consist of two fermions, bound by a new confining gauge force. The mass scale of this new interaction is determined. At energies below 0.5 TeV the standard electroweak theory is valid. A neutral isoscalar weak boson X must exist - its mass is less than 1 TeV. It will decay mainly into quark and lepton pairs and into two or three weak bosons. Above the mass of 1 TeV one finds excitations of the weak bosons, which mainly decay into pairs of weak bosons. Leptons and quarks consist of a fermion and a scalar. Pairs of leptons and pairs of quarks form resonances at very high energy.Comment: 11 pages, no figure

    A Search for the Fourth SM Family Fermions and E_6 Quarks at μ+μ\mu ^{+}\mu ^{-} Colliders

    Full text link
    The potential of μ+μ\mu ^{+}\mu ^{-} colliders to investigate the fourth SM family fermions predicted by flavour democracy has been analyzed. It is shown that muon colliders are advantageous for both pair production of fourth family fermions and resonance production of fourth family quarkonia. Also isosinglet quarks production at μ+μ\mu ^{+}\mu ^{-} colliders has been investigated.Comment: 9 pages, 5 table

    Hierarchy and Up-Down Parallelism of Quark Mass Matrices

    Full text link
    In view of the quark mass hierarchy and in the assumption of the up-down parallelism, we derive two phenomenologically-favored patterns of Hermitian quark mass matrices from the quark flavor mixing matrix. We compare one of them with two existing {\it Ansa¨\it\ddot{a}tze} proposed by Rosner and Worah and by Roberts {\it et al}, and find that only the latter is consistent with the present experimental data.Comment: RevTex 9 pages. Accepted for publication in Phys. Rev.

    Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes

    Get PDF
    We interpret the newly observed muon g-2 anomaly in the framework of a leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly bi-maximal neutrino mixing. Useful constraints are obtained on the rates of lepton-flavor-violating rare decays τμγ\tau \to \mu \gamma, μeγ\mu \to e \gamma and τeγ\tau \to e \gamma as well as the μ\mu-ee conversion ratio RμeR_{\mu e}. We find that Γ(μeγ)\Gamma (\mu \to e \gamma), Γ(τeγ)\Gamma (\tau \to e \gamma) and RμeR_{\mu e} depend crucially on possible non-zero but samll values of the neutrino mixing matrix element Ve3V_{e3}, and they are also sensitive to the Dirac-type CP-violating phase. In particular, we show that Γ(τμγ)/mτ5\Gamma (\tau \to \mu \gamma)/m^5_\tau, Γ(μeγ)/mμ5\Gamma (\mu \to e \gamma)/m^5_\mu and Γ(τeγ)/mτ5\Gamma (\tau \to e \gamma)/m^5_\tau are approximately in the ratio 1:2Ve32:2Ve321: 2|V_{e3}|^2: 2|V_{e3}|^2 if Ve3|V_{e3}| is much larger than O(102){\cal O}(10^{-2}), and in the ratio 2(Δmatm2)2:(Δmsun2)2:(Δmsun2)22 (\Delta m^2_{\rm atm})^2: (\Delta m^2_{\rm sun})^2:(\Delta m^2_{\rm sun})^2 if Ve3|V_{e3}| is much lower than O(103){\cal O}(10^{-3}), where Δmatm2\Delta m^2_{\rm atm} and Δmsun2\Delta m^2_{\rm sun} are the corresponding mass-squared differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing

    Democratic Neutrino Mixing and Radiative Corrections

    Get PDF
    The renormalization effect on a specific ansatz of lepton mass matrices, arising naturally from the breaking of flavor democracy for charged leptons and that of mass degeneracy for light neutrinos, is studied from a superhigh energy scale M_0 \sim 10^{13} GeV to the electroweak scale in the framework of the minimal supersymmetric standard model. We find that the democratic neutrino mixing pattern obtained from this ansatz may in general be instable against radiative corrections. With the help of similar flavor symmetries we prescribe a slightly different scheme of lepton mass matrices at the scale M_0, from which the democratic mixing pattern of lepton flavors can be achieved, after radiative corrections, at the experimentally accessible scales.Comment: RevTex 8 pages. Phys. Rev. D (in printing

    The anomalous magnetic moment of the muon and radiative lepton decays

    Get PDF
    The leptons are viewed as composite objects, exhibiting anomalous magnetic moments and anomalous flavor-changing transition moments. The decay μeγ\mu \to e \gamma is expected to occur with a branching ratio of the same order as the present experimental limit.Comment: 5 page
    corecore