1,816 research outputs found

    On bipartite Rokhsar-Kivelson points and Cantor deconfinement

    Full text link
    Quantum dimer models on bipartite lattices exhibit Rokhsar-Kivelson (RK) points with exactly known critical ground states and deconfined spinons. We examine generic, weak, perturbations around these points. In d=2+1 we find a first order transition between a ``plaquette'' valence bond crystal and a region with a devil's staircase of commensurate and incommensurate valence bond crystals. In the part of the phase diagram where the staircase is incomplete, the incommensurate states exhibit a gapless photon and deconfined spinons on a set of finite measure, almost but not quite a deconfined phase in a compact U(1) gauge theory in d=2+1! In d=3+1 we find a continuous transition between the U(1) resonating valence bond (RVB) phase and a deconfined staggered valence bond crystal. In an appendix we comment on analogous phenomena in quantum vertex models, most notably the existence of a continuous transition on the triangular lattice in d=2+1.Comment: 9 pages; expanded version to appear in Phys. Rev. B; presentation improve

    One-particle and collective electron spectra in hot and dense QED and their gauge dependence

    Get PDF
    The one-particle electron spectrum is found for hot and dense QED and its properties are investigated in comparison with the collective spectrum. It is shown that the one-particle spectrum (in any case its zero momentum limit) is gauge invariant, but the collective spectrum, being qualitatively different, is always gauge dependent. The exception is the case m,μ=0m,\mu=0 for which the collective spectrum long wavelength limit demonstrates the gauge invariance as well.Comment: 9 pages, latex, no figure

    Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs

    Full text link
    We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1\nu=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m\nu=1/m (with mm odd), and capacitive coupling to the reservoirs. In both cases we solve the problem by means of non-equilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ\Delta, the mean level spacing of the edge. At low temperatures, T<ΔT< \Delta, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifest themselves in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings a highly non-universal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>ΔT>\Delta, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with TT, whereas for the capacitive case it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.Comment: 15 pages, 5 figure

    Double point contact in Quantum Hall Line Junctions

    Full text link
    We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coherence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative magnitude of their separation and the temperature. We analyze both regimes in the strong and weak tunneling amplitude limits as well as their temperature dependence. We find that the tunneling conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling amplitude with the same period but with different functional form.Comment: 4 pages, 3 figures; new version, edited text, 2 new references; figure 2 has been edited; new paragraph in page 1 and minor typos have been correcte

    Some Computations in Background Independent Open-String Field Theory

    Full text link
    Recently, background independent open-string field theory has been formally defined in the space of all two-dimensional world-sheet theories. In this paper, to make the construction more concrete, I compute the action for an off-shell tachyon field of a certain simple type. From the computation it emerges that, although the string field action does not coincide with the world-sheet (matter) partition function in general, these functions do coincide on shell. This can be demonstrated in general, as long as matter and ghosts are decoupled.Comment: 14 p

    Artificial electric field in Fermi Liquids

    Full text link
    Based on the Keldysh formalism, we derive an effective Boltzmann equation for a quasi-particle associated with a particular Fermi surface in an interacting Fermi liquid. This provides a many-body derivation of Berry curvatures in electron dynamics with spin-orbit coupling, which has received much attention in recent years in non-interacting models. As is well-known, the Berry curvature in momentum space modifies naive band dynamics via an artificial magnetic field in momentum space. Our Fermi liquid formulation completes the reinvention of modified band dynamics by introducing in addition an "artificial electric field", related to Berry curvature in frequency and momentum space. We show explicitly how the artificial electric field affects the renormalization factor and transverse conductivity of interacting U(1) Fermi liquids with non-degenerate bands. Accordingly, we also propose a method of momentum resolved Berry's curvature detection in terms of angle resolved photoemission spectroscopy (ARPES)

    Topological superconducting phases from inversion symmetry breaking order in spin-orbit-coupled systems

    Full text link
    We analyze the superconducting instabilities in the vicinity of the quantum-critical point of an inversion symmetry breaking order. We first show that the fluctuations of the inversion symmetry breaking order lead to two degenerate superconducting (SC) instabilities, one in the ss-wave channel, and the other in a time-reversal invariant odd-parity pairing channel (the simplest case being the same as the of 3^3He-B phase). Remarkably, we find that unlike many well-known examples, the selection of the pairing symmetry of the condensate is independent of the momentum-space structure of the collective mode that mediates the pairing interaction. We found that this degeneracy is a result of the existence of a conserved fermionic helicity, χ\chi, and the two degenerate channels correspond to even and odd combinations of SC order parameters with χ=±1\chi=\pm1. As a result, the system has an enlarged symmetry U(1)×U(1)U(1)\times U(1), with each U(1)×U(1)U(1)\times U(1) corresponding to one value of the helicity χ\chi. Because of the enlarged symmetry, this system admits exotic topological defects such as a fractional quantum vortex, which we show has a Majorana zero mode bound at its core. We discuss how the enlarged symmetry can be lifted by small perturbations, such as the Coulomb interaction or Fermi surface splitting in the presence of broken inversion symmetry, and we show that the resulting superconducting state can be topological or trivial depending on parameters. The U(1)×U(1)U(1)\times U(1) symmetry is restored at the phase boundary between the topological and trivial SC states, and allows for a transition between topologically distinct SC phases without the vanishing of the order parameter. We present a global phase diagram of the superconducting states and discuss possible experimental implications.Comment: 14 pages, 5 figures, to match the published versio
    corecore