666 research outputs found

    Emotion and Time Perception: Effects of Film-Induced Mood

    Get PDF
    Previous research into emotion and time perception has been designed to study the time perception of emotional events themselves (e.g., facial expression). Our aim was to investigate the effect of emotions per se on the subsequent time judgment of a neutral, non-affective event. In the present study, the participants were presented with films inducing a specific mood and were subsequently given a temporal bisection task. More precisely, the participants were given two temporal bisection tasks, one before and the other after viewing the emotional film. Three emotional films were tested: one eliciting fear, another sadness, and a neutral control film. In addition, the direct mood experience was assessed using the Brief Mood Introspective Scale that was administered to the participants at the beginning and the end of the session. The results showed that the perception of time did not change after viewing either the neutral control films or the sad films although the participants reported being sadder and less aroused after than before watching the sad film clips. In contrast, the stimulus durations were judged longer after than before viewing the frightening films that were judged to increase the emotion of fear and arousal level. In combination with findings from previous studies, our data suggest that the selective lengthening effect after watching frightening films was mediated by an effect of arousal on the speed of the internal clock system

    Phase diagram of a generalized ABC model on the interval

    Full text link
    We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,...,Ni=1,...,N is occupied by a particle of type \a=A,B,C, with the average density of each particle species N_\a/N=r_\a fixed. These particles interact via a mean field non-reflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N\rw\infty, i/N\rw x\in[0,1] has a unique density profile \p_\a(x) except for some special values of the r_\a for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature Tc=3rArBrC/2πT_c=3\sqrt{r_A r_B r_C}/2\pi.Comment: 25 pages, 6 figure

    tt-Martin boundary of killed random walks in the quadrant

    Get PDF
    We compute the tt-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete tt-harmonic functions. Our approach is uniform in tt, and shows that there are three regimes for the Martin boundary.Comment: 18 pages, 2 figures, to appear in S\'eminaire de Probabilit\'e

    Note sur le comportement sexuel des juments en milieu tropical

    Get PDF
    Aucun résumé disponible en français

    Long range correlations and phase transition in non-equilibrium diffusive systems

    Full text link
    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles.In both cases, the two-point correlation functions allow to detect the occurrence of a phase transition as they become singular when the system approaches the transition

    The Role of Oxidation Compounds in Biofilm Growth on Polyethylene Geomembrane Barriers Used in Landfill

    Get PDF
    In a model study, polyethylene was preoxidized and incubated for a period of 7 months at 40°C in two different municipal solid waste leachates. During the postexperimental analyses, specific attention was paid to the carbonyl species and carboxylic acid depletion during the environmental exposure because it is well known that carboxylic acids are believed to be a potential substrate for the development of microorganisms. The results showed that the carbonyl as well as the carboxylic acid depletion observed follows first-order kinetics. The biofilm formation was characterized using a suite of analytical techniques, and its formation was compared with the carboxylic acid and carbonyl depletion profil

    The grand canonical ABC model: a reflection asymmetric mean field Potts model

    Full text link
    We investigate the phase diagram of a three-component system of particles on a one-dimensional filled lattice, or equivalently of a one-dimensional three-state Potts model, with reflection asymmetric mean field interactions. The three types of particles are designated as AA, BB, and CC. The system is described by a grand canonical ensemble with temperature TT and chemical potentials TλAT\lambda_A, TλBT\lambda_B, and TλCT\lambda_C. We find that for λA=λB=λC\lambda_A=\lambda_B=\lambda_C the system undergoes a phase transition from a uniform density to a continuum of phases at a critical temperature T^c=(2π/3)1\hat T_c=(2\pi/\sqrt3)^{-1}. For other values of the chemical potentials the system has a unique equilibrium state. As is the case for the canonical ensemble for this ABCABC model, the grand canonical ensemble is the stationary measure satisfying detailed balance for a natural dynamics. We note that T^c=3Tc\hat T_c=3T_c, where TcT_c is the critical temperature for a similar transition in the canonical ensemble at fixed equal densities rA=rB=rC=1/3r_A=r_B=r_C=1/3.Comment: 24 pages, 3 figure

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations

    Phase diagram of the ABC model on an interval

    Full text link
    The three species asymmetric ABC model was initially defined on a ring by Evans, Kafri, Koduvely, and Mukamel, and the weakly asymmetric version was later studied by Clincy, Derrida, and Evans. Here the latter model is studied on a one-dimensional lattice of N sites with closed (zero flux) boundaries. In this geometry the local particle conserving dynamics satisfies detailed balance with respect to a canonical Gibbs measure with long range asymmetric pair interactions. This generalizes results for the ring case, where detailed balance holds, and in fact the steady state measure is known only for the case of equal densities of the different species: in the latter case the stationary states of the system on a ring and on an interval are the same. We prove that in the N to infinity limit the scaled density profiles are given by (pieces of) the periodic trajectory of a particle moving in a quartic confining potential. We further prove uniqueness of the profiles, i.e., the existence of a single phase, in all regions of the parameter space (of average densities and temperature) except at low temperature with all densities equal; in this case a continuum of phases, differing by translation, coexist. The results for the equal density case apply also to the system on the ring, and there extend results of Clincy et al.Comment: 52 pages, AMS-LaTeX, 8 figures from 10 eps figure files. Revision: minor changes in response to referee reports; paper to appear in J. Stat. Phy
    corecore