87 research outputs found

    Type IIB Flux Vacua from M-theory via F-theory

    Full text link
    We study in detail some aspects of duality between type IIB and M-theory. We focus on the duality between type IIB string theory on K3 x T^2/Z_2 orientifold and M-theory on K3 x K3, in the F-theory limit. We give the explicit map between the fields and in particular between the moduli of compactification, studying their behavior under the F-theory limit. Turning on fluxes generates a potential for the moduli both in type IIB and in M-theory. We verify that the type IIB analysis gives the same results of the F-theory analysis. In particular, we check that the two potentials match.Comment: 24 pages; reference correcte

    What does inflation really predict?

    Full text link
    If the inflaton potential has multiple minima, as may be expected in, e.g., the string theory "landscape", inflation predicts a probability distribution for the cosmological parameters describing spatial curvature (Omega_tot), dark energy (rho_Lambda, w, etc.), the primordial density fluctuations (Omega_tot, dark energy (rho_Lambda, w, etc.). We compute this multivariate probability distribution for various classes of single-field slow-roll models, exploring its dependence on the characteristic inflationary energy scales, the shape of the potential V and and the choice of measure underlying the calculation. We find that unless the characteristic scale Delta-phi on which V varies happens to be near the Planck scale, the only aspect of V that matters observationally is the statistical distribution of its peaks and troughs. For all energy scales and plausible measures considered, we obtain the predictions Omega_tot ~ 1+-0.00001, w=-1 and rho_Lambda in the observed ballpark but uncomfortably high. The high energy limit predicts n_s ~ 0.96, dn_s/dlnk ~ -0.0006, r ~ 0.15 and n_t ~ -0.02, consistent with observational data and indistinguishable from eternal phi^2-inflation. The low-energy limit predicts 5 parameters but prefers larger Q and redder n_s than observed. We discuss the coolness problem, the smoothness problem and the pothole paradox, which severely limit the viable class of models and measures. Our findings bode well for detecting an inflationary gravitational wave signature with future CMB polarization experiments, with the arguably best-motivated single-field models favoring the detectable level r ~ 0.03. (Abridged)Comment: Replaced to match accepted JCAP version. Improved discussion, references. 42 pages, 17 fig

    Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter

    Get PDF
    We address the open question of performing an explicit stabilisation of all closed string moduli (including dilaton, complex structure and Kaehler moduli) in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. In order to control complex structure moduli stabilisation we consider Calabi-Yau manifolds which exhibit a discrete symmetry that reduces the effective number of complex structure moduli. We calculate the corresponding periods in the symplectic basis of invariant three-cycles and find explicit flux vacua for concrete examples. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario. In the considered example the visible sector lives at a dP_6 singularity which can be higgsed to the phenomenologically interesting class of models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde

    D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation

    Full text link
    In the framework of type IIB string compactifications on Calabi-Yau orientifolds we describe how to construct consistent global embeddings of models with fractional D3-branes and connected `flavour' D7-branes at del Pezzo singularities with moduli stabilisation. Our results are applied to build an explicit compact example with a left-right symmetric model at a dP_0 singularity which features three families of chiral matter and gauge coupling unification at the intermediate scale. We show how to stabilise the moduli obtaining a controlled de Sitter minimum and spontaneous supersymmetry breaking. We find an interesting non-trivial dynamical relation between the requirement of TeV-scale soft terms and the correct phenomenological values of the unified gauge coupling and unification scale.Comment: 31 pages, 5 figures. v2: published version in JHEP, corrections in section 2.2, Appendix A added for better illustration, typos correcte

    Bond strength durability of a resin composite on a reinforced ceramic using various repair systems

    Full text link
    OBJECTIVES: This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. METHODS: Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid+silanization+adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30microm SiO(2)+silanization (ESPE)-Sil)+adhesive (Visio-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H(3)PO(4)+Clearfil Porcelain Bond Activator+Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (microTBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1mm/min). Failure types were analyzed under an optical microscope and SEM. RESULTS: microTBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p<0.001) repair bond strength (19.8+/-3.8MPa) than those of CJ and CL (12.4+/-4.7 and 9.9+/-2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5+/-3.1MPa) than those of PR (12.1+/-2.6MPa) (p<0.01) and CL (4.2+/-2.1MPa) (p<0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%). SIGNIFICANCE: Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested
    corecore