14 research outputs found

    Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs

    No full text
    This experiment was designed to evaluate the ability of three different somatic cell cultures to promote development of early cleavage stage pig embryos. A total of 245 2-cell, 4-cell, 8-cell, and 16-cell pig embryos were cocultured for 5 days with porcine oviductal epithelial cells (POEC), porcine fetal fibroblast monolayer (PEF), a combined POEC and PEF coculture system (PEF-POEC), or Dulbecco\u27s Modified Eagle Medium alone (DMEM). Embryos were collected at slaughter from the reproductive tracts of superovulated prepubertal gilts. Embryos were recovered, evaluated, and randomly placed in one of the four treatment groups. POEC were recovered from oviductal flushes, washed, and placed in 24-well plates. PEF were obtained from 30-day to 60-day fetuses and established in culture. Finally, PEF-POEC consisted of a confluent monolayer of PEF in the bottom of 24-well plates also containing a Costar semipermeable membrane chamber with POEC in it. Embryos were evaluated every 24 h to determine stage of development. More (p \u3c 0.05) embryos developed to blastocysts in POEC (70% and 54%, respectively) and PEF-POEC (67% and 61%, respectively), than in either DMEM (16% and 2%, respectively) or PEF (27% and 23%, respectively). However, development of embryos did not differ (p \u3c 0.05) for POEC and PEF-POEC. These data indicate the presence of a primary culture of POEC promotes in vitro development of early cleavage stage pig embryos

    Nicotine Induces Multinuclear Formation and Causes Aberrant Embryonic Development in Bovine

    No full text
    The present study was designed to investigate the effects of nicotine on development of bovine embryos derived from parthenogenetic activation (PA) and in vitro fertilization (IVF). Nicotine caused disfigured secondary meiotic spindle structures and affected embryonic development in a dose-dependent manner. Concentrations at 0.01-0.5 mM resulted in cleavage and blastocyst rates similar to the controls for both PA and IVF embryos. Nicotine at 2.0 and 4.0 mM significantly decreased the cleavage rates and none of the embryos developed beyond the 16-cell stage. Nicotine might disrupt the polymerization of microfilaments leading to impaired chromosome alignment or segregation, and induce the formation of polynuclei with a variety of abnormal nuclear structures such as 2-6 nuclei, 2-4 metaphase plates, 2-4 sets of anaphase/telophase plates, and the co-existence of polynuclei and 2-4 sets of anaphase/telophase plates. Nicotine adversely affected blastocyst chromosomal composition. Fifty-six to 70% of the IVF blastocysts and 71-88% of the PA blastocysts were polyploid and/or mixoploid after culture in 0.2-1.0 mM nicotine-containing media, which were higher (P \u3c 0.05 or P \u3c 0.01) than the controls. Cell numbers of the nicotine-cultured blastocysts were significantly lower than the control. In conclusion, nicotine induced disfigured spindles and irregular chromosome alignment and possibly impaired cytokinesis, which lead to decreased quality of the yielded blastocysts

    Nicotine Alters Bovine Oocyte Meiosis and Affects Subsequent Embryonic Development

    No full text
    The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%–94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P \u3c 0.05 or P \u3c 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1‐free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development

    Effect of Nicotine on in Vitro Maturation of Bovine Oocytes

    No full text
    The putative effect of nicotine on maturation and the chromosomal complement of bovine oocytes were investigated in the present study. Cumulus-enclosed oocytes were incubated in maturation medium with 0, 0.5, 1.0, 2.5, 5.0, and 10.0 mmol concentrations of nicotine. The results indicated that: (1) nicotine affected cumulus cell expansion in a dose-dependent manner and the perivitelline space failed to form when concentrations were equal to or greater than 5.0 mmol; (2) oocytes treated with 0.5 and 1.0 mmol nicotine concentrations resulted in maturation rates (83.3% and 85.9%, respectively) which was similar to the control (86.2%), whereas treatment with 2.5 and 5.0 mmol concentrations significantly decreased maturation rates to 70.2% and 26.7%, respectively; (3) nicotine at or over 2.5 mmol caused extremely irregular meiotic spindles and interrupted microfilament organization; (4) chromosomal analyses of oocytes with PB1 showed that oocytes derived from 0.5 and 1.0 mmol nicotine groups had haploid complements similar to the control (87–90%), but when the concentrations were increased to 2.5 and 5.0 mmol the haploid state was significantly reduced to around 70%; (5) oocytes at GVBD (germinal vesicle breakdown) and metaphase I stages were less affected by nicotine at 5.0 and 10.0 mmol concentrations than GV-stage oocytes; (6) maturation rates of the short-term nicotine-treated oocytes could be improved when subsequently incubated in normal maturation medium. Prolonged culture of nicotine-pretreated oocytes resulted in self-activation and some oocytes formed 1 or 2 pronuclei. In conclusion, nicotine affects bovine oocyte cumulus cell expansion, maturation rate, and chromosomal complement in a dose-dependent and an oocyte-stage-dependent manner

    Activation of Ribosomal RNA Genes in Porcine Embryos Produced in Vitro or by Somatic Cell Nuclear Transfer

    No full text
    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell nuclear transfer (SCNT) using fluorescence in situ hybridization (FISH) with an rDNA probe and subsequent visualization of the nucleolar proteins by silver staining. In the 205 IVP embryos investigated, all two-cell embryos (n = 34) were categorized as transcriptionally inactive. At the late four-cell stage (n = 45), 38% of the embryos contained 1-3 nuclei with signs of rRNA transcription, indicating an asynchronous transcription initiation. This pattern continued in the following stages, as 78% (n = 47), 47% (n = 42) and 83% (n = 37) of the embryos revealed a mixture of transcriptionally inactive and active cells at the eight-cell, 16-cell and blastocyst stage, respectively. In the 143 SCNT embryos investigated, all two-cell embryos (n = 34) and early four-cell embryos (n = 12) were also transcriptionally inactive. At the late four-cell stage (n = 33) and at the eight-cell stage (n = 24) there were equal proportions of transcriptionally active and inactive embryos and essentially all embryos that developed to the 16-cell stage (n = 21) and further to the blastocyst stage (n = 19) contained only transcriptionally active cells. In conclusion, porcine embryos produced in vitro had an asynchronous pattern of rRNA transcription initiation when compared to SCNT and in vivo developed porcine embryos

    Genetic Reprogramming of Transcription Factor AP-gamma in Bovine Somatic Cell Nuclear Transfer Preimplantation Embryos and Placentomes

    No full text
    Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite a tremendous amount of research devoted to its improvement over the past decade. Frequent early and mid-gestational losses are commonly accompanied by placental abnormalities. A transcription factor, activating protein AP-2γ, has been shown to be necessary for proper placental development in the mouse. We first evaluated the expression of the gene coding for AP-2γ (Tfap2c) in several bovine fibroblast donor cell lines and found it was not expressed. Subsequently we determined the expression profile of Tfap2c in oocytes and various stages of preimplantation in vitro fertilized (IVF) embryos. Tfap2c was undetectable in oocytes and early embryos, and was detectable at relatively high levels in morula and blastocyst IVF embryos. The lack of expression in oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the eight-cell stage, 2 days earlier than control embryos. Control embryos first expressed Tfap2c at the morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No differences in expression were detected at the blastocyst stage. To determine whether Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated its expression in cotyledons and caruncles of SCNT and control pregnancies between days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased between days 55 and 90, while expression in cotyledons was relatively consistent over that same period. Expression levels in SCNT tissues were not different from controls. This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, which may have developmental consequences resulting from genes influenced by Tfap2c, but expression was not different at the blastocyst stage and in placentomes
    corecore