27,011 research outputs found

    VISIR-VLT high resolution study of the extended emission of four obscured post-AGB candidates

    Full text link
    The onset of the asymmetry of planetary nebulae (PNe) is expected to occur during the late Asymptotic Giant Branch (AGB) and early post-AGB phases of low- and intermediate-mass stars. Among all post-AGB objects, the most heavily obscured ones might have escaped the selection criteria of previous studies detecting extreme axysimmetric structures in young PNe. Since the most heavily obscured post-AGB sources can be expected to descend from the most massive PN progenitors, these should exhibit clear asymmetric morphologies. We have obtained VISIR-VLT mid-IR images of four heavily obscured post-AGB objects barely resolved in previous Spitzer IRAC observations to analyze their morphology and physical conditions across the mid-IR. The VISIR-VLT images have been deconvolved, flux calibrated, and used to construct RGB composite pictures as well as color and optical depth maps that allow us to study the morphology and physical properties of the extended emission of these sources. We have detected extended emission from the four objects in our sample and resolved it into several structural components that are greatly enhanced in the temperature and optical depth maps. They reveal the presence of asymmetry in three young PNe (IRAS 15534-5422, IRAS 17009-4154, and IRAS 18454+0001), where the asymmetries can be associated with dusty torii and slightly bipolar outflows. The fourth source (IRAS 18229-1127), a possible post-AGB star, is better described as a rhomboidal detached shell. The heavily obscured sources in our sample do not show extreme axisymmetric morphologies. This is at odds with the expectation of highly asymmetrical morphologies in post-AGB sources descending from massive PN progenitors. The sources presented in this paper may be sampling critical early phases in the evolution of massive PN progenitors, before extreme asymmetries develop.Comment: 9 pages, 4 figure

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,500≥5×10−12f_\textrm{X,500}\geq 5\times10^{-12} erg s−1^{-1} cm−2^{-2} in the 0.1−2.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    Effect of training and familiarity on responsiveness to human cues in domestic dogs (<i>Canis familiaris</i>)

    Get PDF
    Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues

    Shear-melting of a hexagonal columnar crystal by proliferation of dislocations

    Full text link
    A hexagonal columnar crystal undergoes a shear-melting transition above a critical shear rate or stress. We combine the analysis of the shear-thinning regime below the melting with that of synchrotron X-ray scattering data under shear and propose the melting to be due to a proliferation of dislocations, whose density is determined by both techniques to vary as a power law of the shear rate with a 2/3 exponent, as expected for a creep model of crystalline solids. Moreover, our data suggest the existence under shear of a line hexatic phase, between the columnar crystal and the liquid phase

    A search for magnetic fields on central stars in planetary nebulae

    Full text link
    One of the possible mechanisms responsible for the panoply of shapes in planetary nebulae is the presence of magnetic fields that drive the ejection of ionized material during the proto-planetary nebula phase. Therefore, detecting magnetic fields in such objects is of key importance for understanding their dynamics. Still, magnetic fields have not been detected using polarimetry in the central stars of planetary nebulae. Circularly polarized light spectra have been obtained with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory and the Intermediate dispersion Spectrograph and Imaging System at the William Herschel Telescope. Nineteen planetary nebulae spanning very different morphology and evolutionary stages have been selected. Most of central stars have been observed at different rotation phases to point out evidence of magnetic variability. In this paper, we present the result of two observational campaigns aimed to detect and measure the magnetic field in the central stars of planetary nebulae on the basis of low resolution spectropolarimetry. In the limit of the adopted method, we can state that large scale fields of kG order are not hosted on the central star of planetary nebulae.Comment: Paper accepted to be published in Astronomy and Astrophysics on 20/01/201
    • …
    corecore