320 research outputs found

    Mean first passage time analysis reveals rate-limiting steps, parallel pathways and dead ends in a simple model of protein folding

    Full text link
    We have analyzed dynamics on the complex free energy landscape of protein folding in the FOLD-X model, by calculating for each state of the system the mean first passage time to the folded state. The resulting kinetic map of the folding process shows that it proceeds in jumps between well-defined, local free energy minima. Closer analysis of the different local minima allows us to reveal secondary, parallel pathways as well as dead ends.Comment: 7 page

    Expression of PAFR as Part of a Prosurvival Response to Chemotherapy: A Novel Target for Combination Therapy in Melanoma

    Get PDF
    Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas

    Expression of PAFR as Part of a Prosurvival Response to Chemotherapy: A Novel Target for Combination Therapy in Melanoma

    Get PDF
    Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas

    Large phenotype jumps in biomolecular evolution

    Full text link
    By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population of biopolymers with a specific phenotype, that originated from a given genotypic sequence by a single mutational event. Depending on the ratio g0 that characterizes the spread of potential energies of the mutated population with respect to temperature, three different statistical regimes have been identified. We suggest that biopolymers found in nature are in a critical regime with g0 in the range 1-6, corresponding to a broad, but not too broad, phenotypic distribution resembling a truncated Levy flight. Thus the biopolymer phenotype can be considerably modified in just a few mutations. The proposed model is in good agreement with the experimental distribution of activities determined for a population of single mutants of a group I ribozyme.Comment: to appear in Phys. Rev. E; 7 pages, 6 figures; longer discussion in VII, new fig.

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    On the statistical mechanics of prion diseases

    Full text link
    We simulate a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., Mad Cow disease) with concommitant prion protein misfolding and aggregation. Our simulations lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self averaging. We model `species barriers' to prion infection and assess a related treatment protocol.Comment: 5 Pages, 3 eps figures (submitted to Physical Review Letters

    Steric constraints in model proteins

    Full text link
    A simple lattice model for proteins that allows for distinct sizes of the amino acids is presented. The model is found to lead to a significant number of conformations that are the unique ground state of one or more sequences or encodable. Furthermore, several of the encodable structures are highly designable and are the non-degenerate ground state of several sequences. Even though the native state conformations are typically compact, not all compact conformations are encodable. The incorporation of the hydrophobic and polar nature of amino acids further enhances the attractive features of the model.Comment: RevTex, 5 pages, 3 postscript figure

    Statistical mechanics of secondary structures formed by random RNA sequences

    Full text link
    The formation of secondary structures by a random RNA sequence is studied as a model system for the sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-replica problem to the denaturation of a single homogeneous RNA in 6-dimensional embedding space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten phase where many secondary structures with comparable total energy coexist. A numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase. On the other hand, a scaling argument based on the extremal statistics of rare regions can be constructed to show that the low temperature phase is unstable to sequence disorder. We performed a detailed numerical study of the low temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale, low-energy excitations of the secondary structures from the ground state structure. We find the excitation energy to grow very slowly (i.e., logarithmically) with the length scale of the excitation, suggesting the existence of a marginal glass phase. The transition between the low temperature glass phase and the high temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the logarithmic excitation energy, from being disorder dominated to entropy dominated.Comment: 24 pages, 16 figure

    Geometric and Statistical Properties of the Mean-Field HP Model, the LS Model and Real Protein Sequences

    Get PDF
    Lattice models, for their coarse-grained nature, are best suited for the study of the ``designability problem'', the phenomenon in which most of the about 16,000 proteins of known structure have their native conformations concentrated in a relatively small number of about 500 topological classes of conformations. Here it is shown that on a lattice the most highly designable simulated protein structures are those that have the largest number of surface-core switchbacks. A combination of physical, mathematical and biological reasons that causes the phenomenon is given. By comparing the most foldable model peptides with protein sequences in the Protein Data Bank, it is shown that whereas different models may yield similar designabilities, predicted foldable peptides will simulate natural proteins only when the model incorporates the correct physics and biology, in this case if the main folding force arises from the differing hydrophobicity of the residues, but does not originate, say, from the steric hindrance effect caused by the differing sizes of the residues.Comment: 12 pages, 10 figure
    corecore