21,589 research outputs found

    On the validity of the adiabatic approximation in compact binary inspirals

    Full text link
    Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version appearing on Phys. Rev.

    Dynamical aspects of inextensible chains

    Full text link
    In the present work the dynamics of a continuous inextensible chain is studied. The chain is regarded as a system of small particles subjected to constraints on their reciprocal distances. It is proposed a treatment of systems of this kind based on a set Langevin equations in which the noise is characterized by a non-gaussian probability distribution. The method is explained in the case of a freely hinged chain. In particular, the generating functional of the correlation functions of the relevant degrees of freedom which describe the conformations of this chain is derived. It is shown that in the continuous limit this generating functional coincides with a model of an inextensible chain previously discussed by one of the authors of this work. Next, the approach developed here is applied to a inextensible chain, called the freely jointed bar chain, in which the basic units are small extended objects. The generating functional of the freely jointed bar chain is constructed. It is shown that it differs profoundly from that of the freely hinged chain. Despite the differences, it is verified that in the continuous limit both generating functionals coincide as it is expected.Comment: 15 pages, LaTeX 2e + various packages, 3 figures. The title has been changed and three references have been added. A large part of the manuscript has been rewritten to improve readability. Chapter 4 has been added. It contains the construction of the generating functional without the shish-kebab approximation and a new derivation of the continuous limit of the freely jointed bar chai

    Large N and double scaling limits in two dimensions

    Get PDF
    Recently, the author has constructed a series of four dimensional non-critical string theories with eight supercharges, dual to theories of light electric and magnetic charges, for which exact formulas for the central charge of the space-time supersymmetry algebra as a function of the world-sheet couplings were obtained. The basic idea was to generalize the old matrix model approach, replacing the simple matrix integrals by the four dimensional matrix path integrals of N=2 supersymmetric Yang-Mills theory, and the Kazakov critical points by the Argyres-Douglas critical points. In the present paper, we study qualitatively similar toy path integrals corresponding to the two dimensional N=2 supersymmetric non-linear sigma model with target space CP^n and twisted mass terms. This theory has some very strong similarities with N=2 super Yang-Mills, including the presence of critical points in the vicinity of which the large n expansion is IR divergent. The model being exactly solvable at large n, we can study non-BPS observables and give full proofs that double scaling limits exist and correspond to universal continuum limits. A complete characterization of the double scaled theories is given. We find evidence for dimensional transmutation of the string coupling in some non-critical string theories. We also identify en passant some non-BPS particles that become massless at the singularities in addition to the usual BPS states.Comment: 38 pages, including an introductory section that makes the paper self-contained, two figures and one appendix; v2: typos correcte

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    On the critical slowing down exponents of mode coupling theory

    Full text link
    A method is provided to compute the parameter exponent λ\lambda yielding the dynamic exponents of critical slowing down in mode coupling theory. It is independent from the dynamic approach and based on the formulation of an effective static field theory. Expressions of λ\lambda in terms of third order coefficients of the action expansion or, equivalently, in term of six point cumulants are provided. Applications are reported to a number of mean-field models: with hard and soft variables and both fully-connected and dilute interactions. Comparisons with existing results for Potts glass model, ROM, hard and soft-spin Sherrington-Kirkpatrick and p-spin models are presented.Comment: 4 pages, 1 figur

    On the asymmetric zero-range in the rarefaction fan

    Get PDF
    We consider the one-dimensional asymmetric zero-range process starting from a step decreasing profile. In the hydrodynamic limit this initial condition leads to the rarefaction fan of the associated hydrodynamic equation. Under this initial condition and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps we derive the Law of Large Numbers for the position of a second class particle under the initial configuration in which all the positive sites are empty, all the negative sites are occupied with infinitely many first class particles and with a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle, this particle chooses randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation through some sort of renormalization function. By coupling the zero-range with the exclusion process we derive some limiting laws for more general initial conditions.Comment: 22 pages, to appear in Journal of Statistical Physic
    • 

    corecore