21,589 research outputs found
On the validity of the adiabatic approximation in compact binary inspirals
Using a semi-analytical approach recently developed to model the tidal
deformations of neutron stars in inspiralling compact binaries, we study the
dynamical evolution of the tidal tensor, which we explicitly derive at second
post-Newtonian order, and of the quadrupole tensor. Since we do not assume a
priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the
so called "adiabatic approximation", our approach enables us to establish to
which extent such approximation is reliable. We find that the ratio between the
quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral
progresses, but this phenomenon only marginally affects the emitted
gravitational waveform. We estimate the frequency range in which the tidal
component of the gravitational signal is well described using the stationary
phase approximation at next-to-leading post-Newtonian order, comparing
different contributions to the tidal phase. We also derive a semi-analytical
expression for the Love number, which reproduces within a few percentage points
the results obtained so far by numerical integrations of the relativistic
equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version
appearing on Phys. Rev.
Dynamical aspects of inextensible chains
In the present work the dynamics of a continuous inextensible chain is
studied. The chain is regarded as a system of small particles subjected to
constraints on their reciprocal distances. It is proposed a treatment of
systems of this kind based on a set Langevin equations in which the noise is
characterized by a non-gaussian probability distribution. The method is
explained in the case of a freely hinged chain. In particular, the generating
functional of the correlation functions of the relevant degrees of freedom
which describe the conformations of this chain is derived. It is shown that in
the continuous limit this generating functional coincides with a model of an
inextensible chain previously discussed by one of the authors of this work.
Next, the approach developed here is applied to a inextensible chain, called
the freely jointed bar chain, in which the basic units are small extended
objects. The generating functional of the freely jointed bar chain is
constructed. It is shown that it differs profoundly from that of the freely
hinged chain. Despite the differences, it is verified that in the continuous
limit both generating functionals coincide as it is expected.Comment: 15 pages, LaTeX 2e + various packages, 3 figures. The title has been
changed and three references have been added. A large part of the manuscript
has been rewritten to improve readability. Chapter 4 has been added. It
contains the construction of the generating functional without the
shish-kebab approximation and a new derivation of the continuous limit of the
freely jointed bar chai
Large N and double scaling limits in two dimensions
Recently, the author has constructed a series of four dimensional
non-critical string theories with eight supercharges, dual to theories of light
electric and magnetic charges, for which exact formulas for the central charge
of the space-time supersymmetry algebra as a function of the world-sheet
couplings were obtained. The basic idea was to generalize the old matrix model
approach, replacing the simple matrix integrals by the four dimensional matrix
path integrals of N=2 supersymmetric Yang-Mills theory, and the Kazakov
critical points by the Argyres-Douglas critical points. In the present paper,
we study qualitatively similar toy path integrals corresponding to the two
dimensional N=2 supersymmetric non-linear sigma model with target space CP^n
and twisted mass terms. This theory has some very strong similarities with N=2
super Yang-Mills, including the presence of critical points in the vicinity of
which the large n expansion is IR divergent. The model being exactly solvable
at large n, we can study non-BPS observables and give full proofs that double
scaling limits exist and correspond to universal continuum limits. A complete
characterization of the double scaled theories is given. We find evidence for
dimensional transmutation of the string coupling in some non-critical string
theories. We also identify en passant some non-BPS particles that become
massless at the singularities in addition to the usual BPS states.Comment: 38 pages, including an introductory section that makes the paper
self-contained, two figures and one appendix; v2: typos correcte
Glueball operators and the microscopic approach to N=1 gauge theories
We explain how to generalize Nekrasov's microscopic approach to N=2 gauge
theories to the N=1 case, focusing on the typical example of the U(N) theory
with one adjoint chiral multiplet X and an arbitrary polynomial tree-level
superpotential Tr W(X). We provide a detailed analysis of the generalized
glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa
matrix model and of the generalized Konishi anomaly equations. We compute in
particular the non-trivial quantum corrections to the Virasoro operators and
algebra that generate these equations. We have performed explicit calculations
up to two instantons, that involve the next-to-leading order corrections in
Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of
references corrected, version to appear in JHE
On the critical slowing down exponents of mode coupling theory
A method is provided to compute the parameter exponent yielding the
dynamic exponents of critical slowing down in mode coupling theory. It is
independent from the dynamic approach and based on the formulation of an
effective static field theory. Expressions of in terms of third order
coefficients of the action expansion or, equivalently, in term of six point
cumulants are provided. Applications are reported to a number of mean-field
models: with hard and soft variables and both fully-connected and dilute
interactions. Comparisons with existing results for Potts glass model, ROM,
hard and soft-spin Sherrington-Kirkpatrick and p-spin models are presented.Comment: 4 pages, 1 figur
On the asymmetric zero-range in the rarefaction fan
We consider the one-dimensional asymmetric zero-range process starting from a
step decreasing profile. In the hydrodynamic limit this initial condition leads
to the rarefaction fan of the associated hydrodynamic equation. Under this
initial condition and for totally asymmetric jumps, we show that the weighted
sum of joint probabilities for second class particles sharing the same site is
convergent and we compute its limit. For partially asymmetric jumps we derive
the Law of Large Numbers for the position of a second class particle under the
initial configuration in which all the positive sites are empty, all the
negative sites are occupied with infinitely many first class particles and with
a single second class particle at the origin. Moreover, we prove that among the
infinite characteristics emanating from the position of the second class
particle, this particle chooses randomly one of them. The randomness is given
in terms of the weak solution of the hydrodynamic equation through some sort of
renormalization function. By coupling the zero-range with the exclusion process
we derive some limiting laws for more general initial conditions.Comment: 22 pages, to appear in Journal of Statistical Physic
- âŠ