17,876 research outputs found

    LANDSAT-4 sensor performance

    Get PDF
    Preflight and in-orbit sensor and data measurements indicate that TM meets or exceeds most specifications. Measured spectral band edges meet instrument specifications in 12 out of 14 cases; there is ample dynamic range. The signal-to-noise ratio exceeds specifications, except for band 3, channel 4; and band 7 channel 7 is very noisy but still meets specifications. The modulation transfer function of channel 4, band 2, is smaller than specified. Registration errors between the primary focal plane (PFP) and the cold focal plane (CFP) are about 0.75 pixels along-scan and 0.2 pixels across scan. Forward and reverse scan discontinuities, are well within ground-processing capabilities to rectify. Instrument gain variability, up to 7% for band 5, requires use of the internal calibration (IC) system to assure radiometric accuracy. Preliminary applications evaluation of image contents indicates that TM provides much better definition of edges than MSS

    TM digital image products for applications

    Get PDF
    Computer compatible tapes (CCTs) of LANDSAT 4 thematic mapper (TM) digital image products are compared and reviewed. The following tape formats are discussed: (1) raw band-sequential data (CCT-BT); (2) calibrated data (CCT-AT); and (3) geometrically resampled data (CCT-PT). Each format represents different steps in the process of producing fully corrected TM data. The CCT-BT images are uncorrected radiometrically or geometrically, CCT-AT data are radiometrically calibrated, and CCT-PT images are both radiometrically and geometrically corrected

    TM digital image products for applications

    Get PDF
    The image characteristics of digital data generated by LANDSAT 4 thematic mapper (TM) are discussed. Digital data from the TM resides in tape files at various stages of image processing. Within each image data file, the image lines are blocked by a factor of either 5 for a computer compatible tape CCT-BT, or 4 for a CCT-AT and CCT-PT; in each format, the image file has a different format. Nominal geometric corrections which provide proper geodetic relationships between different parts of the image are available only for the CCT-PT. It is concluded that detector 3 of band 5 on the TM does not respond; this channel of data needs replacement. The empty bin phenomenon in CCT-AT images results from integer truncations of mixed-mode arithmetric operations

    Scaling study of Si and strained Si n-MOSFETs with different high-k gate stacks

    Get PDF
    Using ensemble Monte Carlo device simulations, this paper studies the impact of interface roughness and soft-optical phonon scattering on the performance of sub-100nm Si and strained Si MOSFETs with different high-k gate stacks. Devices with gate lengths down to 25nm have been investigated

    Astrophysical SS factor for the 15N(p,γ)16O{}^{15}{\rm N}(p,\gamma){}^{16}{\rm O} reaction from RR-matrix analysis and asymptotic normalization coefficient for 16O15N+p{}^{16}{\rm O} \to {}^{15}{\rm N} + p. Is any fit acceptable?

    Get PDF
    The 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong Jπ=1J^{\pi}=1^{-} resonances at ER=312E_{R}= 312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction has been published [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. The analysis has been done using the RR-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C2=539.2C^{2}= 539.2 fm1{}^{-1}, which exceeds the previously measured value by a factor of 3\approx 3. Here we present a new RR-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C2=200.34C^{2}=200.34 fm1{}^{-1}. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present 8 fits, five unconstrained and three constrained. In all the fits the ANC is fixed at the previously determined experimental value C2=200.34C^{2}=200.34 fm1{}^{-1}. For the unconstrained fit with the boundary condition Bc=Sc(E2)B_{c}=S_{c}(E_{2}), where E2E_{2} is the energy of the second level, we get S(0)=39.0±1.1S(0)=39.0 \pm 1.1 keVb and normalized χ~2=1.84{\tilde \chi}^{2}=1.84, i.e. the result which is similar to [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. From all our fits we get the range 33.1S(0)40.133.1 \leq S(0) \leq 40.1 keVb which overlaps with the result of [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. We address also physical interpretation of the fitting parameters.Comment: Submitted to PR

    The Infra‐Red Absorption Spectrum of Mono‐Deutero‐Ethane under High Resolution

    Full text link
    The infra‐red spectrum of C2H5D has been investigated under high resolution. As expected, the bands corresponding to degenerate vibrations of C2H6 are split into two components with oscillations in the symmetry plane and normal to the symmetry plane respectively. Analogues of several of the inactive C2H6 frequencies have also been observed, including a pair at 1122 cm−1 and 1159 cm−1 corresponding to a Raman line of ordinary ethane which has been predicted at about 1170 cm−1 but has not as yet been found.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69718/2/JCPSA6-17-2-182-1.pd

    Characterization and Testing of a Micro-g Whispering Gallery Mode Optomechanical Accelerometer

    Get PDF
    Navigation, bio-tracking devices and gravity gradiometry are amongst the diverse range of applications requiring ultrasensitive measurements of acceleration. We describe an accelerometer that exploits the dispersive and dissipative coupling of the motion of an optical whispering gallery mode (WGM) resonator to a waveguide. A silica microsphere-cantilever is used as both the optical cavity and inertial test-mass. Deflections of the cantilever in response to acceleration alter the evanescent coupling between the microsphere and the waveguide, in turn causing a measurable frequency shift and broadening of the WGM resonance. The theory of this optomechanical response is outlined. By extracting the dispersive and dissipative optomechanical rates from data we find good agreement between our model and sensor response. A noise density of 4.5 μ\mug Hz1/2^{-1/2} with a bias instability of 31.8 μ\mug (g=9.81 ms2^{-2}) is measured, limited by classical noise larger than the test-mass thermal motion. Closed-loop feedback is demonstrated to reduce the bias instability and long term drift. Currently this sensor outperforms both commercial accelerometers used for navigation and those in ballistocardiology for monitoring blood flowing into the heart. Further optimization would enable short-range gravitational force detection with operation beyond the lab for terrestrial or space gradiometry.Comment: 8 pages, 9 figures. Minor changes: additional methodology for calculating noise terms with recalculation of acceleration random walk and rate ramp. Gradient guide-lines and arrows on Figure 7(a) corrected, no change to dat

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics
    corecore