50,911 research outputs found

    Randomized Dynamical Decoupling Techniques for Coherent Quantum Control

    Full text link
    The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.Comment: 7 pages, 2 figures. Replaced with final version. Invited talk delivered at the XXXVI Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 2006. To be published in J. Mod. Optic

    Stochastic Model in the Kardar-Parisi-Zhang Universality With Minimal Finite Size Effects

    Full text link
    We introduce a solid on solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one dimensional substrate the results obtained from the model for the roughness exponent α\alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang (KPZ) equation. One of the unique feature of the model is that the α\alpha as obtained from the structure factor S(k,t)S(k,t) for the one dimensional substrate growth exactly matches with the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on a 2 and 3 dimensional substrates.Comment: 8 pages, 7 figures, accepted in Phys. Rev.

    Antiresonance and interaction-induced localization in spin and qubit chains with defects

    Full text link
    We study a spin chain with an anisotropic XXZ coupling in an external field. Such a chain models several proposed types of a quantum computer. The chain contains a defect with a different on-site energy. The interaction between excitations is shown to lead to two-excitation states localized next to the defect. In a resonant situation scattering of excitations on each other might cause decay of an excitation localized on the defect. We find that destructive quantum interference suppresses this decay. Numerical results confirm the analytical predictions.Comment: Updated versio

    Lorentz-violating dimension-five operator contribution to the black body radiation

    Full text link
    We investigate the thermodynamics of a photon gas in an effective field theory model that describes Lorentz violations through dimension-five operators and Horava-Lifshitz theory. We explore the electrodynamics of the model which includes higher order derivatives in the Lagrangian that can modify the dispersion relation for the propagation of the photons. We shall focus on the deformed black body radiation spectrum and modified Stefan-Boltzmann law to address the allowed bounds on the Lorentz-violating parameter.Comment: 8 pages, 6 figures. Version published in PL

    Optimal Trajectories for Near-Earth-Objects Using Solar Electric Propulsion (SEP) and Gravity Assisted Maneuver

    Get PDF
    The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded for the process of optimization of trajectories. Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method will be used in the simulations
    • …
    corecore