4,026 research outputs found

    Transverse polarization of Sigma(+)(1189) in photoproduction on a hydrogen target in CLAS

    Get PDF
    Experimental results on the Sigma(+)(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson Laboratory are presented. The Sigma(+)(1189) was reconstructed in the exclusive reaction gamma + p -\u3e K-s(0) + Sigma(+)(1189) via the Sigma(+) -\u3e p pi(0) decay mode. The K-s(0) was reconstructed in the invariant mass of two oppositely charged pions with the pi(0) identified in the missing mass of the detected p pi(+)pi(-) final state. Experimental data were collected in the photon energy range E-gamma = 1.0-3.5 GeV (root s range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances

    First measurement of the polarization observable E in the (p)over-right-arrow((gamma)over-right-arrow, pi(+))n reaction up to 2.25 GeV

    Get PDF
    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction (p) over right arrow((gamma) over right arrow, pi( + ))n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Jfilich-Bonn, and SAID groups. (C) 2015 The Authors. Published by Elsevier B.V

    Hard Two-Body Photodisintegration of He-3

    Get PDF
    We have measured cross sections for the gamma He-3 -\u3e pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90 degrees. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron

    Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors

    Get PDF
    We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q(2) from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors G(1)(pi 0p) (Q(2)) and G(2)(pi 0p) (Q(2)). The data are compared to these generalized form factors and the results for G(1)(pi 0p) (Q(2)) are found to be in good agreement with the LCSR predictions, but the level of agreement with G(2)(pi 0p) (Q(2)) is poor. DOI: 10.1103/PhysRevC.87.04520

    Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle

    Get PDF
    The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty. Paired appendages are widely considered key innovations that allowed new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The last 150 years of debate has been shaped by two contentious theories: the ventrolateral fin-fold hypothesis and the archipterygium hypothesis. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although tantalizing developmental evidence has revived interest in this idea, it is apparently unsupported by fossil evidence. Here we present fossil evidence of a pharyngeal basis for the vertebrate shoulder girdle. We use CT scanning to reveal details of the braincase of Kolymaspis sibirica, a placoderm fish from the Early Devonian of Siberia that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our new evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes. The results revive a key aspect of the archipterygium hypothesis, but also reconciles it with the ventrolateral fin fold model

    Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction ³He↑(e,e\u27)X

    Get PDF
    We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3He↑(e, e\u27)X on a polarized 3He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be nonzero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.7 \u3c W \u3c 2.9 GeV, 1.0 \u3c Q2 \u3c 4.0 GeV2 and 0.16 \u3c x \u3c 0.65. Neutron asymmetries were extracted using the effective nucleon polarization and measured proton-to-3He cross-section ratios. The measured neutron asymmetries are negative with an average value of (-1.09 ± 0.38) x 10-2for invariant mass W \u3e 2 GeV, which is nonzero at the 2.89σ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering

    Exclusive πᵒ Electroproduction at W \u3e 2 GeV with CLAS

    Get PDF
    Exclusive neutral-pion electroproduction (ep → e\u27p\u27π0 was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdΦπ and structure functions σT+ ϵσL, σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions

    Evidence for the onset of color transparency in rho(0) electroproduction off nuclei

    Get PDF
    We have measured the nuclear transparency of the incoherent diffractive A(e,e\u27 rho(0)) process in C-12 and Fe-56 targets relative to H-2 using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced rho(0,)s on a nucleus relative to deuterium, which is sensitive to rho A interaction, was studied as function of the coherence length (l(c)), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q(2)). While the transparency for both C-12 and Fe-56 showed no lc dependence, a significant Q(2) dependence was measured, which is consistent with calculations that included the color transparency effects. (C) 2012 Elsevier B.V. All rights reserved

    Measurements of ep → e\u27π+n at 1.6 \u3c W \u3c2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    Get PDF
    Differential cross sections of the exclusive process ep -\u3e e \u27π+n were measured with good precision in the range of the photon virtuality Q2 = 1.8-4.5 GeV2 and the invariant mass range of the π+n final state W = 1.6-2.0 GeV using the Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the n π+center-of-mass system. More than 37 000 cross-section points were measured. The contributions of the isospin I = ½ resonances N(1675) 5/2-, N(1680) 5/2+, and N(1710) 1/2+ were extracted at different values of Q2 using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-t dispersion relations, were employed in the analysis. We observe significant strength of the N(1675)5/2- in the A(1/2) amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the N(1680)5/2+ we observe a slow changeover from the dominance of the A3/2 amplitude at the real photon point (Q2 = 0) to a Q2 where A1/2 begins to dominate. The scalar amplitude S 1/2 drops rapidly with Q2consistent with quark model prediction. For the N(1710)½+ resonance our analysis shows significant strength for the A½ amplitude at Q2 \u3c 2.5 GeV2

    Induced Polarization of Λ1116 in Kaon Electroproduction

    Get PDF
    We have measured. the induced polarization of the Λ (1116) in the reaction ep →e′K+Λ , detecting the scattered e′ and K+ in the final state along with the proton from the decay Λ → pπ− . The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy W (1.6≤ W ≤ 2.7 GeV) and covered the full range of the kaon production angle at an average momentum transfer Q2 = 1.90GeV2 . In this experiment a 5.50-GeV electron beam was incident upon an unpolarized liquid-hydrogen target. We have mapped out the W and kaon production angle dependencies of the induced polarization and found striking differences from photoproduction data over most of the kinematic range studied. However, we also found that the induced polarization is essentially Q2 independent in our kinematic domain, suggesting that somewhere below the Q2 covered here there must be a strong Q2 dependence. Along with previously published photo- and electroproduction cross sections and polarization observables, these data are needed for the development of models, such as effective field theories, and as input to coupled-channel analyses that can provide evidence of previously unobserved s -channel resonances
    • …
    corecore