10,740 research outputs found

    Quark-Meson Coupling model based upon the Nambu-Jona Lasinio model

    Get PDF
    The NJL model for the octet baryons, using proper time regularization to simulate some of the features of confinement, is solved self-consistently in nuclear matter. This provides an alternative framework to the MIT bag model which has been used in the quark-meson coupling model. After fitting the parameters of the model to the saturation properties of symmetric nuclear matter the model is used to explore the equation of state of pure neutron matter as well as nuclear matter at densities relevant to heavy ion collisions. With a view to future studies of high mass neutron stars, the binding of hyperons is also explored.Comment: 7 pages and 4 figure

    R-Band Imaging of Fields Around 1<z<2 Radiogalaxies

    Get PDF
    We have taken deep RR-band images of fields around five radiogalaxies: 0956+47, 1217+36, 3C256, 3C324 and 3C294 with 1<z<21<z<2 . 0956+47 is found to show a double nucleus. Our data on 1217+36 suggest the revision of its classification as a radiogalaxy. We found a statistically significant excess of bright (19.5<R<2219.5<R<22) galaxies on scales of 2 arcmin around the radiogalaxies (which have R21.4R \approx 21.4) in our sample. The excess has been determined empirically to be at 99.5%\gtrsim 99.5\% level. It is remarkable that this excess is not present for 22<R<23.7522<R<23.75 galaxies within the same area, suggesting that the excess is not physically associated to the galaxies but due to intervening groups and then related to gravitational lensing.Comment: 20 pages, uuencoded compressed PostScript including tables. Figures available upon request. To appear in the March 1995 issue of The Astronomical Journa

    Toponomic Quantum Computation

    Full text link
    Holonomic quantum computation makes use of non-abelian geometric phases, associated to the evolution of a subspace of quantum states, to encode logical gates. We identify a special class of subspaces, for which a sequence of rotations results in a non-abelian holonomy of a topological nature, so that it is invariant under any SO(3)SO(3)-perturbation. Making use of a Majorana-like stellar representation for subspaces, we give explicit examples of topological-holonomic (or toponomic) NOT and CNOT gates.Comment: 5 pages, 4 figure

    The time traveler's guide to the quantization of zero modes

    Get PDF
    We study the relationship between the quantization of a massless scalar field on the two-dimensional Einstein cylinder and in a spacetime with a time machine. We find that the latter picks out a unique prescription for the state of the zero mode in the Einstein cylinder. We show how this choice arises from the computation of the vacuum Wightman function and the vacuum renormalized stress-energy tensor in the time-machine geometry. Finally, we relate the previously proposed regularization of the zero mode state as a squeezed state with the time-machine warp parameter, thus demonstrating that the quantization in the latter regularizes the quantization in an Einstein cylinder

    Current-induced two-level fluctuations in pseudo spin-valves (Co/Cu/Co) nanostructures

    Full text link
    Two-level fluctuations of the magnetization state of pseudo spin-valve pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires (~40 nm in diameter, 6000 nm in length) are triggered by spin-polarized currents of 10^7 A/cm^2 at room temperature. The statistical properties of the residence times in the parallel and antiparallel magnetization states reveal two effects with qualitatively different dependences on current intensity. The current appears to have the effect of a field determined as the bias field required to equalize these times. The bias field changes sign when the current polarity is reversed. At this field, the effect of a current density of 10^7 A/cm^2 is to lower the mean time for switching down to the microsecond range. This effect is independent of the sign of the current and is interpreted in terms of an effective temperature for the magnetization.Comment: 4 pages, 5 figures, revised version, to be published in Phys. Rev. Let
    corecore