426 research outputs found

    Computing fractal dimension in supertransient systems directly, fast and reliable

    Full text link
    Chaotic transients occur in many experiments including those in fluids, in simulations of the plane Couette flow, and in coupled map lattices and they are a common phenomena in dynamical systems. Superlong chaotic transients are caused by the presence of chaotic saddles whose stable sets have fractal dimensions that are close to phase-space dimension. For many physical systems chaotic saddles have a big impact on laboratory measurements, and it is important to compute the dimension of such stable sets including fractal basin boundaries through a direct method. In this work, we present a new method to compute the dimension of stable sets of chaotic saddles directly, fast, and reliable.Comment: 6 pages, 3 figure

    Bifurcation and Chaos in Coupled Ratchets exhibiting Synchronized Dynamics

    Full text link
    The bifurcation and chaotic behaviour of unidirectionally coupled deterministic ratchets is studied as a function of the driving force amplitude (aa) and frequency (ω\omega). A classification of the various types of bifurcations likely to be encountered in this system was done by examining the stability of the steady state in linear response as well as constructing a two-parameter phase diagram in the (aωa -\omega) plane. Numerical explorations revealed varieties of bifurcation sequences including quasiperiodic route to chaos. Besides, the familiar period-doubling and crises route to chaos exhibited by the one-dimensional ratchet were also found. In addition, the coupled ratchets display symmetry-breaking, saddle-nodes and bubbles of bifurcations. Chaotic behaviour is characterized by using the sensitivity to initial condition as well as the Lyapunov exponent spectrum; while a perusal of the phase space projected in the Poincareˊ\acute{e} cross-section confirms some of the striking features.Comment: 7 pages; 8 figure

    Structural Studies of Wnts and Identification of an LRP6 Binding Site

    Get PDF
    SummaryWnts are secreted growth factors that have critical roles in cell fate determination and stem cell renewal. The Wnt/β-catenin pathway is initiated by binding of a Wnt protein to a Frizzled (Fzd) receptor and a coreceptor, LDL receptor-related protein 5 or 6 (LRP5/6). We report the 2.1 Å resolution crystal structure of a Drosophila WntD fragment encompassing the N-terminal domain and the linker that connects it to the C-terminal domain. Differences in the structures of WntD and Xenopus Wnt8, including the positions of a receptor-binding β hairpin and a large solvent-filled cavity in the helical core, indicate conformational plasticity in the N-terminal domain that may be important for Wnt-Frizzled specificity. Structure-based mutational analysis of mouse Wnt3a shows that the linker between the N- and C-terminal domains is required for LRP6 binding. These findings provide important insights into Wnt function and evolution

    Discrete embedded solitons

    Get PDF
    We address the existence and properties of discrete embedded solitons (ESs), i.e., localized waves existing inside the phonon band in a nonlinear dynamical-lattice model. The model describes a one-dimensional array of optical waveguides with both the quadratic (second-harmonic generation) and cubic nonlinearities. A rich family of ESs was previously known in the continuum limit of the model. First, a simple motivating problem is considered, in which the cubic nonlinearity acts in a single waveguide. An explicit solution is constructed asymptotically in the large-wavenumber limit. The general problem is then shown to be equivalent to the existence of a homoclinic orbit in a four-dimensional reversible map. From properties of such maps, it is shown that (unlike ordinary gap solitons), discrete ESs have the same codimension as their continuum counterparts. A specific numerical method is developed to compute homoclinic solutions of the map, that are symmetric under a specific reversing transformation. Existence is then studied in the full parameter space of the problem. Numerical results agree with the asymptotic results in the appropriate limit and suggest that the discrete ESs may be semi-stable as in the continuous case.Comment: A revtex4 text file and 51 eps figure files. To appear in Nonlinearit

    Bubbling and bistability in two parameter discrete systems

    Full text link
    We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inflection point of the map function.Comment: LaTeX v2.09, 14 pages with 4 PNG figure

    Behavior of Dynamical Systems in the Regime of Transient Chaos

    Full text link
    The transient chaos regime in a two-dimensional system with discrete time (Eno map) is considered. It is demonstrated that a time series corresponding to this regime differs from a chaotic series constructed for close values of the control parameters by the presence of "nonregular" regions, the number of which increases with the critical parameter. A possible mechanism of this effect is discussed.Comment: 4 pages, 2 figure

    The mixmaster universe: A chaotic Farey tale

    Full text link
    When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic. Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the techniques used to study the mixmaster dynamics yield observer dependent answers. Here we resolve the conflict by using observer independent, fractal methods. We prove the mixmaster universe is chaotic by exposing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the 6-dimensional minisuperspace of the full Einstein equations, and in a 2-dimensional discretisation of the dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the chaos by calculating the strange repellor's Lyapunov dimension, topological entropy and multifractal dimensions. As all of these quantities are coordinate, or gauge independent, there is no longer any ambiguity--the mixmaster universe is indeed chaotic.Comment: 45 pages, RevTeX, 19 Figures included, submitted to PR

    Enhancement of Noise-induced Escape through the Existence of a Chaotic Saddle

    Full text link
    We study the noise-induced escape process in a prototype dissipative nonequilibrium system, the Ikeda map. In the presence of a chaotic saddle embedded in the basin of attraction of the metastable state, we find the novel phenomenon of a strong enhancement of noise-induced escape. This result is established by employing the theory of quasipotentials. Our finding is of general validity and should be experimentally observable.Comment: 4 page

    Calcium Flux in Neutrophils Synchronizes β2 Integrin Adhesive and Signaling Events that Guide Inflammatory Recruitment

    Get PDF
    Intracellular calcium flux is an early step in the signaling cascade that bridges ligation of selectin and chemokine receptors to activation of adhesive and motile functions during recruitment on inflamed endothelium. Calcium flux was imaged in real time and provided a means of correlating signaling events in neutrophils rolling on E-selectin and stimulated by chemokine in a microfluidic chamber. Integrin dependent neutrophil arrest was triggered by E-selectin tethering and ligation of IL-8 seconds before a rapid rise in intracellular calcium, which was followed by the onset of pseudopod formation. Calcium flux on rolling neutrophils increased in a shear dependent manner, and served to link integrin adhesion and signaling of cytoskeletally driven cell polarization. Abolishing calcium influx through membrane expressed store operated calcium channels inhibited activation of high affinity β2 integrin and subsequent cell arrest. We conclude that calcium influx at the plasma membrane integrates chemotactic and adhesive signals, and functions to synchronize signaling of neutrophil arrest and migration in a shear stress dependent manner

    Optimization hardness as transient chaos in an analog approach to constraint satisfaction

    Full text link
    Boolean satisfiability [1] (k-SAT) is one of the most studied optimization problems, as an efficient (that is, polynomial-time) solution to k-SAT (for k3k\geq 3) implies efficient solutions to a large number of hard optimization problems [2,3]. Here we propose a mapping of k-SAT into a deterministic continuous-time dynamical system with a unique correspondence between its attractors and the k-SAT solution clusters. We show that beyond a constraint density threshold, the analog trajectories become transiently chaotic [4-7], and the boundaries between the basins of attraction [8] of the solution clusters become fractal [7-9], signaling the appearance of optimization hardness [10]. Analytical arguments and simulations indicate that the system always finds solutions for satisfiable formulae even in the frozen regimes of random 3-SAT [11] and of locked occupation problems [12] (considered among the hardest algorithmic benchmarks); a property partly due to the system's hyperbolic [4,13] character. The system finds solutions in polynomial continuous-time, however, at the expense of exponential fluctuations in its energy function.Comment: 27 pages, 14 figure
    corecore