24,762 research outputs found

    Coulomb Glasses: A Comparison Between Mean Field and Monte Carlo Results

    Full text link
    Recently a local mean field theory for both eqilibrium and transport properties of the Coulomb glass was proposed [A. Amir et al., Phys. Rev. B 77, 165207 (2008); 80, 245214 (2009)]. We compare the predictions of this theory to the results of dynamic Monte Carlo simulations. In a thermal equilibrium state we compare the density of states and the occupation probabilities. We also study the transition rates between different states and find that the mean field rates underestimate a certain class of important transitions. We propose modified rates to be used in the mean field approach which take into account correlations at the minimal level in the sense that transitions are only to take place from an occupied to an empty site. We show that this modification accounts for most of the difference between the mean field and Monte Carlo rates. The linear response conductance is shown to exhibit the Efros-Shklovskii behaviour in both the mean field and Monte Carlo approaches, but the mean field method strongly underestimates the current at low temperatures. When using the modified rates better agreement is achieved

    Gluon structure function for deeply inelastic scattering with nucleus in QCD

    Get PDF
    In this talk we present the first calculation of the gluon structure function for nucleus in QCD. We discuss the Glauber formula for the gluon structure function and the violation of this simple approach that we anticipate in QCD. (Talk given by E. Levin at QCD and nuclear target session at the Workshop on Deep Inelastic Scattering and QCD, Paris, April 1995).Comment: 10 pages(latex file),4 fig (eps.files

    Coulomb gap in the one-particle density of states in three-dimensional systems with localized electrons

    Full text link
    The one-particle density of states (1P-DOS) in a system with localized electron states vanishes at the Fermi level due to the Coulomb interaction between electrons. Derivation of the Coulomb gap uses stability criteria of the ground state. The simplest criterion is based on the excitonic interaction of an electron and a hole and leads to a quadratic 1P-DOS in the three-dimensional (3D) case. In 3D, higher stability criteria, including two or more electrons, were predicted to exponentially deplete the 1P-DOS at energies close enough to the Fermi level. In this paper we show that there is a range of intermediate energies where this depletion is strongly compensated by the excitonic interaction between single-particle excitations, so that the crossover from quadratic to exponential behavior of the 1P-DOS is retarded. This is one of the reasons why such exponential depletion was never seen in computer simulations.Comment: 6 pages, 1 figur

    Gluon density in nuclei

    Get PDF
    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.Comment: Talk at RHIC'96, 43 pages, 23 figure

    Measuring the saturation scale in nuclei

    Full text link
    The saturation momentum seeing in the nuclear infinite momentum frame is directly related to transverse momentum broadening of partons propagating through the medium in the nuclear rest frame. Calculation of broadening within the color dipole approach including the effects of saturation in the nucleus, gives rise to an equation which describes well data on broadening in Drell-Yan reaction and heavy quarkonium production.Comment: 11 pages, 5 figures, based on the talk presented by B.K. at the INT workshop "Physics at a High Energy Electron Ion Collider", Seattle, October 200

    Scaling violation and shadowing corrections at HERA

    Get PDF
    We study the value of shadowing corrections (SC) in HERA kinematic region in Glauber - Mueller approach. Since the Glauber - Mueller approach was proven in perturbative QCD in the double logarithmic approximation (DLA), we develop the DLA approach for deep inelastic structure function which takes into account the SC. Our estimates show small SC for F2F_2 in HERA kinematic region while they turn out to be sizable for the gluon structure function. We compare our estimates with those for gluon distribution in leading order (LO) and next to leading order (NLO) in the DGLAP evolution equations.Comment: 9pp,6 figures in eps file

    Three charged particles in the continuum. Astrophysical examples

    Full text link
    We suggest a new adiabatic approach for description of three charged particles in the continuum. This approach is based on the Coulomb-Fourier transformation (CFT) of three body Hamiltonian, which allows to develop a scheme, alternative to Born-Oppenheimer one. The approach appears as an expansion of the kernels of corresponding integral transformations in terms of small mass-ratio parameter. To be specific, the results are presented for the system ppeppe in the continuum. The wave function of a such system is compared with that one which is used for estimation of the rate for triple reaction p+p+ed+ν, p+p+e\to d+\nu, which take place as a step of pppp-cycle in the center of the Sun. The problem of microscopic screening for this particular reaction is discussed

    Next-to-leading-order corrections to exclusive processes in kTk_T factorization

    Full text link
    We calculate next-to-leading-order (NLO) corrections to exclusive processes in kTk_T factorization theorem, taking πγγ\pi\gamma^*\to\gamma as an example. Partons off-shell by kT2k_T^2 are considered in both the quark diagrams from full QCD and the effective diagrams for the pion wave function. The gauge dependences in the above two sets of diagrams cancel, when deriving the kTk_T-dependent hard kernel as their difference. The gauge invariance of the hard kernel is then proven to all orders by induction. The light-cone singularities in the kTk_T-dependent pion wave function are regularized by rotating the Wilson lines away from the light cone. This regularization introduces a factorization-scheme dependence into the hard kernel, which can be minimized in the standard way. Both the large double logarithms ln2kT\ln^2k_T and ln2x\ln^2 x, xx being a parton momentum fraction, arise from the loop correction to the virtual photon vertex, the former being absorbed into the pion wave function and organized by the kTk_T resummation, and the latter absorbed into a jet function and organized by the threshold resummation. The NLO corrections are found to be only few-percent for πγγ\pi\gamma^*\to\gamma, if setting the factorization scale to the momentum transfer from the virtual photon.Comment: 13 pages; version to appear in Physical Review

    Physical Electronics and Surface Physics

    Get PDF
    Contains reports on one research project.Joint Services Electronics Program (Contract DAAB07-71-C-0300
    corecore