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1 Introduction.

The subject of the talk is the gluon structure function for DIS with nucleus. The gluon
structure function is the most important physical observable that governs the physics
at high energy (low Bjorken x) in the DIS. Dealing with nucleus we have to take into
account the shadowing correction, which is the main point of interest in this talk. We
show that the shadowing correction in the region of small x can be treated theoretically
in QCD and can be reliably calculated using the information on the behaviour of the
gluon structure function for the nucleon. We organize the presentation in the following
way: �rst, we discuss the Glauber approach to the nucleus gluon structure function and
answer the question what information on nucleon structure function we need to provide a
reliable calculation using the Glauber formula; second, we briey consider the corrections
to Glauber approach that have been anticipated in QCD. It should be stressed that this is
the �rst presentation of our results and the lack of space does not allow us to discuss the
issue in details. This is why we are going to outline our strategy and to present the �rst
estimates rather than to give the complete study of the problem which will be published
elsewhere.

2 Glauber approach in QCD .

The idea how to write the Glauber formula in QCD has been �rst formulated in ref.
[1] and was carefully developed by Mueller in ref. [2]. It is easier to explain the idea
considering the penetration of quark-antiquark pair through the target. Indeed, during
the time of passage through the target the transverse distance rt between quark and
antiquark can vary by the amount �rt / R kt

E
, where E is the energy of the pair and R

is the size of the target (see Fig.1). The quark transverse momentum (kt) is kt /
1
rt
due

to uncertainty principle. Therefore

� rt R
kt

E
� rt (1)

holds if
r2t � s � 2mR (2)

In terms of Bjorken x the above condition looks as follows:

x �
1

2mR
(3)
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It means that the transverse distance between quark and antiquark is a good degree of
freedom [1][2][3]. As has been shown by Mueller not only quark - antiquark pair can be
considered in such way. The propagation of a gluon through the target can be treated in
a similar way as the interaction of gluon - gluon pair with de�nite transverse separation
rt with the target. The total cross section of the absorbtion of gluon(G�) with virtuality
Q2 and Bjorken x can be written in the form:

�G� = (4)

Z 1

0
dz

Z
d2rt

2�

Z
d2bt

2�
	G�

?
(Q2; rt; x; z) 2 � f1 � exp[� �(r2t ) S(b

2
t ) ] g � 	

G�

?

�

(Q2; rt; x; z)

where 	G�

?
is the wave function of the virtual gluon with transverse polarization. As was

σN(r2
t )

N

G*(Q2)
r

→
⊥

A A

Figure 1: The structure of the parton cascade in the Glauber formula.

shown in ref. [2] within leading log approximation of perturbative QCD (pQCD) we can
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safely replace this function by 1
r2
t

after integration over z in eq.(3). Finally the Glauber

formula for the gluon structure function reads ( for Nc = Nf = 3):

xG(Q2; x) =
4

�2

Z 1

x

dx0

x0

Z
d2 bt

�

Z
1

4

Q2

d2 rt

�

1

r4t
2 f1 � e�

1

2
�GG(r2t ;x

0)S(b2t )g (5)

where

�GG =
3�s
4

�2 r2t xG(
4

r2t
; x) (6)

and S(b2t ) is the pro�le function in impact parameter space for the interaction of the gluon-
gluon pair with the target. We use for the calculation the Gaussian parameterization for
S, namely:

S(b2t ) =
A

�R2
A

e
�

b2
t

R2
A (7)

where A is the number of the nucleons in a nucleus and R2
A is the mean radius of a nucleus,

which is equal to

R2
A =

2

5
R2
WS

RWS is the size of the nucleus in the Wood - Saxon parameterization, which we chose
RWS = r0A

1

3 with r0 = 1:3fm. Using the Gaussian parameterization for S we can take
the integral over bt and get the answer:

xG(Q2; x) =
2

�2

Z 1

x

dx0

x0

Z
1

1

Q2

d2 r0t
�

R2
A

r04t
fC + ln�G(x

0; r02t ) + E1(�G(x
0; r02t ) g (8)

where C is the Euler constant and E1 is the exponential integral (see ref.[4] 5.1.11) and

�G(x
0; r02t ) =

3�sA� r02t
2R2

A

x0GN (x
0;
1

r02t
) (9)

3 Theory status of the Glauber formula.

In this section we would like to recall the main assumptions that have been made to get
the Glauber formula:

1.Energy (x) should be so high (small) to satisfy eqs.(2) and (3) and �s ln(1=x) � 1.
The last condition means that we are doing the calculation in leading log(1/x) approxi-
mation of perturbative QCD (pQCD).
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2.The GLAP [5] evolution equation holds in the region of small x. It means that
�s ln(1=r2t ) � 1. One of the lessons that we have learned at this workshop is the fact
that the GLAP equation is able to describe the HERA data quite well.

3.Only the fastest partons ( GG pair) interacts with the target and there are no
correlations between partons from di�erent parton cascades (see Fig.1).

4.There are no correlations between di�erent nucleons in a nucleus.

5.The average bt for GG pair - nucleon interaction is much smaller than RA.

We are going to discuss how well all the above assumptions work in the last section of
the talk.

4 Results.

In our calculations we use the GRV parameterization [6] for the nucleon gluon structure
function. This parameterization describes the data quite well and it is suited for our
purpose because (i) the initial virtuality for the GLAP equation is small and we can discuss
the contribution of the large distances having some support in the experimental data; (ii)
the parameterization uses the GLAP equation and the most essential contribution comes
from the region where �s lnQ2 � 1 and �s ln(1=x) � 1.

4.1 Where the shadowing corrections are big.

Fig.2 shows the kinematic region of the deeply inelastic scattering. The curves are the
solution of the equation �G = 1 for N (nucleon), Ca and Au. Above each of these curves
the value of �G > 1 and the shadowing correction (SC) are big, below �G < 1 and the
SC are rather small.

4.2 What we are able to calculate in QCD.

From the master equation (5) one can see that the large distances contribute to the value
of the gluon structure function. Such contributions we are not able to calculate in pQCD
and the value of the gluon structure function crucially depends on the hypothesis about
nonperturbative behaviour of the gluon structure function that we have to assume to treat
the large distances contribution. In pQCD we can safely calculate only the di�erence
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Figure 2: Solution for � = 1.
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xGA(x;Q2) � xGA(x;Q2 = Q2
0) where Q

2
0 is the initial virtuality. In Fig. 3 one can �nd

the calculation for the ratio:

R1 =
xGA(x;Q2) � xGA(x;Q2 = Q2

0)

A (xGN (x;Q2) � xGN (x;Q2 = Q2
0))

(10)

as function of x for Ca and Au (Q2
0 = 0.25 GeV 2).
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Figure 3: R1 as a function of ln(1=xB) for Ca and Au.
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4.3 Contribution of the large distances.

As has been mentioned we are able to treat this problem only using some model for large
distance behaviour of xGN . Fig.4 shows the ratio:

R2 =
xGA(x;Q2)

A (xGN (x;Q2))
(11)

for two models:

1. xGN (x;Q2 < Q2
0) = Q2

Q2

0

xGN (x;Q2 = Q2
0). This model takes into account the

correct limit of the gluon structure function at small value of Q2, which follows from the
gauge invariance of QCD.

2.xGN (x;Q2 < Q2
0) = xGN (x;Q2 = Q2

0). In this model we assume that the scale
for the behaviour xGN / Q2 is much smaller than Q2

0. We look at the di�erence in the
value of R2 as the estimates of possible errors that originated from our poor knowledge of
long distance behaviour of the gluon structure function. The conclusion is that we cannot
calculate the value of R2 even at x = 10�3 at Q2 = 1GeV 2 with better accuracy that
20%, while at larger value of Q2 (Q2 � 10GeV 2) the accuracy is better ( about 5%).

5 Correction to the Glauber formula.

To abandon the main assumptions which have been made in the Glauber formula we have
to develop a technique to include (i) the interactions of all partons ( not only the fastest
one) with a nucleus; (ii) the parton interaction inside a nucleon and (iii) the nucleon
correlation inside a nucleus. Such a technique has been suggested in ref.[8] and it is based
on new evolution equation that takes into account the parton interaction inside the parton
cascade as well as the parton interaction with the di�erent nucleons. The lack of space
does not allow us to discuss this problem in details but we want to point out that the
Glauber formula shall be used as initial condition to the new evolution equation of ref.[8].

The numerical estimates [8] shows that the most essential contribution at least in
HERA kinematic region is generated by the interaction of all partons with the target
which corresponds to so called \fan" diagrams (see ref.[7]) while the dynamic correlation
(see refs.[9] [10]) due to the interaction inside the parton cascade remains to be rather
small.

However, reliable estimates can be done only after extracting from HERA data the
value of the scale for the SC for nucleon structure function. In our numerical estimates
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which will be published elsewhere we follow the following strategy: we neglect the dynamic
gluon correlations and iterate the master equation (5) several times. Since there is strong
ordering in rapidity of parton in each parton cascade the \i� th" iteration means that we
take into account the interaction with the target of all partons with the value of rapidity
(y) larger than yi. It turns out that we have to make only two iterations for x > 10�3 to
get convergent result.

6 Conclusions.

We know the Glauber formula and the technique how to �nd the corrections to the Glauber
formula in QCD. However we cannot provide reliable predictions for the gluon structure
function for nucleus until we will get more data on low Q2 and low x behaviour of the
nucleon structure function. Unfortunately, we have to know not only the behaviour of the
nucleon structure function but also extract from the experimental data the scale for the
shadowing corrections to the value of the gluon structure function in the nucleon. We are
going to check how the information from DIS with nucleus can reduce these uncertainties.
At the moment we suggest to measure the ratio R1 which can be calculated with much
better accuracy than the value of the gluon structure function.
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