51 research outputs found

    Effect of vasopressin on the expression of genes for key enzymes of interstitial hyaluronan turnover and concentration ability in WAG rat kidneys

    Get PDF
    In mammals, arginine-vasopressin (AVP) is a major hormone involved in the regulation of renal water reabsorption, acting via an increase in the osmotic permeability of the collecting duct epithelium. The AVP-induced intracellular events include, as an essential step, the trafficking of the vesicles containing the water channels, aquaporin-2, to the apical plasma membrane of the collecting duct principal cells. The interstitium of the renal inner medulla contains abundant linear negatively charged glycosaminoglycan hyaluronan (HA), which affects the water flow depending on their polymeric state. Using real-time RT-PCR, we tested the assumption that the renal hyaluronan may be involved in the longterm vasopressin effect on water reabsorption. The expression of the genes encoding hyaluronan synthase-2 (Has2) and hyaluronidase-1, 2 (Hyal1, Hyal2) in the kidneys of Wistar Albino Glaxo (WAG) was studied. Has2 mRNA content was the highest in the kidney papilla of the hydrated rats. The V2 receptor-selective vasopressin analog dDAVP (100 μg/kg bw, ip, twice a day for 2 days) induced a considerable decrease in Has2 mRNA content in the papilla with less pronounced changes in the cortex. In contrast to Has2, dDAVP treatment caused a significant increase in Hyal1 and Hyal2 mRNA content in the renal papilla. There was a good fit between Hyal1 and Hyal2 transcriptional level and changes in hyaluronidase activity in the renal tissue. It was suggested that vasopressin is able to inhibit the synthesis of hyaluronan and concomitantly promotes its degradation in the renal papilla interstitium, thereby facilitating water flow between elements of the renal countercurrent system. The implications for this effect are discussed in the context of the literature data

    FAVOR (FAst Variability Optical Registration) -- A Two-telescope Complex for Detection and Investigation of Short Optical Transients

    Get PDF
    An astronomical complex intended to detect optical transients (OTs) in a wide field and follow them up with high time resolution investigation is described.Comment: 4 pages, 3 figures. To be published in "Il Nuovo Cimento", Proceedings of the 4th Rome Workshop on Gamma-Ray Bursts in the Afterglow Era, eds. L. Piro, L. Amati, S. Covino, B. Gendr

    STUDY OF THE EFFECT OF HYPOTHERMIC CONSERVATION ON THE INTRACELLULAR SODIUM CONCENTRATION IN THE ENDOTHELIUM OF CORNEAL TRANSPLANTS

    Get PDF
    Endothelial keratoplasty has become the treatment of choice for corneal endothelial dysfunction. Advancements in the surgical treatment of corneal endothelial diseases depend on progress in graft conservation and its related advantages in assessing the suitability of grafts for transplantation. Transport of water and ions by cornea endothelium is important for the optic properties of cornea. In this work, we study the intracellular sodium concentration in cornea endothelial cells in samples of pig cornea that underwent hypothermic conservation for 1 and 10 days and endothelial cells of human cornea grafts after 10-day conservation. The concentration of intracellular sodium in preparations of endothelial cells was assayed using fluorescent dye SodiumGreen. The fluorescent images were analyzed with the custom-made computer program CytoDynamics. An increased level of intracellular sodium was shown in the endothelium after 10-day conservation in comparison with one-day conservation (pig samples). Sodium permeability of pig endothelial cell plasma membranes significantly decreased in these samples. Assessment of intracellular sodium in human cornea endothelium showed a higher level – as was in analogues pig samples of the corneal endothelium. The assay of the intracellular sodium balance concentration established in endothelial cells after hypothermic conservation in mediums L-15 and Optisol-GS showed a significant advantage of specialized me dium Optisol-GS. The balanced intracellular concentration after 10 days of hypothermic conservation was significantly lower in cells incubated at 4 °C in Optisol-GS (L-15, 128 ± 14,  n = 15; Optisol-GS, 108 ± 14, n = 11; mM, p < 0.001). Intracellular sodium concentration could be a useful parameter for assessing cornea endothelium cell viability

    Transition from Fireball to Poynting-flux-dominated Outflow in Three-Episode GRB 160625B

    Full text link
    The ejecta composition is an open question in gamma-ray bursts (GRB) physics. Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis, suggesting a hot fireball origin. Others show a featureless non-thermal spectrum known as the "Band" function, consistent with a synchrotron radiation origin and suggesting that the jet is Poynting-flux-dominated at the central engine and likely in the emission region as well. There are also bursts showing a sub-dominant thermal component and a dominant synchrotron component suggesting a likely hybrid jet composition. Here we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-rays and optical wavelengths, whose prompt emission consists of three isolated episodes separated by long quiescent intervals, with the durations of each "sub-burst" being \sim 0.8 s, 35 s, and 212 s, respectively. Its high brightness (with isotropic peak luminosity Lp,iso4×1053_{\rm p, iso}\sim 4\times 10^{53} erg/s) allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to main burst and to extended emission. The spectral properties of the first two sub-bursts are distinctly different, allowing us to observe the transition from thermal to non-thermal radiation between well-separated emission episodes within a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet.Comment: Revised version reflecting the referees' comments. 27 pages, 11 figures, 5 tables. The final edited version will appear in Nature Astronom

    Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B

    Get PDF
    The ejecta composition is an open question in gamma-ray burst (GRB) physics . Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis , suggesting a hot fireball origin. Others show a featureless non-thermal spectrum known as the Band function , consistent with a synchrotron radiation origin and suggesting that the jet is Poynting-flux dominated at the central engine and probably in the emission region as well . There are also bursts showing a sub-dominant thermal component and a dominant synchrotron component , suggesting a probable hybrid jet composition . Here, we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-ray and optical wavelengths, whose prompt emission consists of three isolated episodes separated by long quiescent intervals, with the durations of each sub-burst being approximately 0.8 s, 35 s and 212 s, respectively. Its high brightness (with isotropic peak luminosity L ≈ 4 × 10 erg s) allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to main burst and to extended emission. The spectral properties of the first two sub-bursts are distinctly different, allowing us to observe the transition from thermal to non-thermal radiation between well-separated emission episodes within a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet.B.-B.Z. thanks Y.-Z. Fan, Y.-Z. Wang, H. Wang, K. D. Alexander and D. Lazzati for helpful discussions. We are grateful to K. Hurley, I. Mitrofanov, A. Sanin, M. Litvak and W. Boynton for the use of Mars Odyssey data in the triangulation. We acknowledge the use of the public data from the Swift and Fermi data archives. B.-B. Z. and A.J. C.-T. acknowledge support from the Spanish Ministry Projects AYA2012-39727-C03-01 and AYA2015-71718-R. Part of this work made use of B.-B.Z.'s personal Interactive Data Language (IDL) code library ZBBIDL and personal Python library ZBBPY. The computation resources used in this work are owned by Scientist Support LLC. B.Z. acknowledges NASA NNX14AF85G and NNX15AK85G for support. Z. G. D. acknowledges the National Natural Science Foundation of China(NSFC) (grant 11573014). Y.-D. H. acknowledges support by China Scholarships Council (grant 201406660015). Mini-MegaTORTORA belongs to Kazan Federal University, and the work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. A. P., E.M., P. M. and A.V. are grateful to the Russian Foundation for Basic Research (grant 17-02-01388) for partial support. A. P. and S.B.P. acknowledge joint BRICS (Brazil, Russia, India, China and South Africa) grant RFBR 17-52-80139 and 388-ProFChEAP for partial support. R. I. is grateful to grant RUSTAVELI FR/379/6300/ 14 for partial support. Observations on Mini-MegaTORTORA are supported by the Russian Science Foundation (grant 14-50-00043). A.V.F. and A. M. thank the Russian Science Foundation (grant 14-50-00043). L.M. and A.F.Z. acknowledge support from INTA-CEDEA ESAt personnel hosting the Pi of the Sky facility at the BOOTES-1 station. H. G. and X.-Y.W. acknowledge NSFC (grants 11603003 and 11625312, respectively). Z. G. D., X.-F. W., B.Z., X.-Y. W.,L.S. and F.-W.Z. are also supported by the 973 program (grant 2014CB845800). F.-W.Z. is also supported in part by the NSFC (grants U1331101 and 11163003), the Guangxi Natural Science Foundation (grant 2013GXNSFAA019002) and the project of outstanding young teachers' training in higher education institutions of Guangxi. L.S. acknowledges support by the NSFC (grant 11103083) and the Joint NSFC-ISF Research Program (grant 11361140349). S.O. acknowledges the support of the Leverhulme Trust. S.J. acknowledges support from Korea Basic Science Research Program through NRF-2014R1A6A3A03057484 and NRF-2015R1D1A4A01020961, and I. H. P. through NRF-2015R1A2A1A01006870 and NRF-2015R1A2A1A15055344. R. A., D. F. and D. S. acknowledge support from RSF (grant 17-12-01378). A. K. acknowledges the Science and Education Ministry of Kazakhstan (grant 0075/GF4).Peer reviewe

    Transition from fireball to Poynting-flux-dominated outflow in three-episode GRB 160625B [submitted version]

    Get PDF
    The ejecta composition of gamma-ray bursts (GRBs) is an open question in GRB physics. Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis, suggesting a hot fireball origin. Some others show an essentially feature-less non-thermal spectrum known as the "Band" function, which can be interpreted as synchrotron radiation in an optically thin region, suggesting a Poynting-flux-dominated jet composition. Here we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-rays and optical wavelengths, whose prompt emission consists of three dramatically different isolated episodes separated by long quiescent intervals, with the durations of each "sub-burst" being ∼ 0.8 s, 35 s, and 212 s, respectively. The high brightness (with isotropic peak luminosity Lp,iso∼4×1053 erg/s) of this GRB allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to the main burst and extended emission. Interestingly, the spectral properties of the first two sub-bursts are distinctly different, which allow us for the first time to observe the transition from thermal to non-thermal radiation in a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet

    Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes

    Full text link

    RESTORATION OF CORNEA ENDOTHELIUM FUNCTION (REVIEW)

    No full text
    Review highlights modern findings on molecular mechanisms of dysfunction of human corneal endothelial cells causes decline of vision. When water enters the corneal stroma, it disorganizes the regular arrangement of the collagen fibrils, which reduces corneal transparency. Corneal endothelial cells are responsible for keeping the dehydration state of the stroma by pumping out fluid. However, this layer of cells can become deficient, for example following intra-corneal surgery or because of a pathology. Corneal transplantation is currently the only treatment in order to restore vision following endothelial dysfunctions. The authors survey methodological problems and prospects for correction of endothelial cells dysfunction. Human endothelial cells do not proliferate in vivo because these cells arrest in the G1 phase of the cell cycle. Modern research showed that corneal endothelium cells could proliferate in special conditions. An alternative approach is to use human stem cells as an endothelial cells source. New methods and improved technique of storage and preservation of corneal grafts, palliative methods of surgical treatment aimed at reducing the hydration of the surface layers of the cornea are considered. The review includes consideration of works for endothelial tissue engineering using cell culture technologies. Endothelial keratoplasty limited by the technical difficulty of the procedure, a shortage of available grafts, and the potential for graft failure or rejection. These limitations are driving researchers to develop new approaches, such as methods of organ cultur
    corecore