3,669 research outputs found

    Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment

    Get PDF
    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible

    Global dynamics and stability limits for planetary systems around HD 12661, HD 38529, HD 37124 and HD 160691

    Get PDF
    In order to distinguish between regular and chaotic planetary orbits we apply a new technique called MEGNO in a wide neighbourhood of orbital parameters determined using standard two-body Keplerian fits for HD 12661, HD 38529, HD 37124 and HD 160691 planetary systems. We show that the currently announced orbital parameters place these systems in very different situations from the point of view of dynamical stability. While HD 38529 and HD 37124 are located within large stability zones in the phase space around their determined orbits, the preliminary orbits in HD 160691 are highly unstable. The orbital parameters of the HD 12661 planets are located in a border region between stable and unstable dynamical regimes, so while its currently determined orbital parameters produce stable regular orbits, a minor change within the margin of error of just one parameter may result in a chaotic dynamical system.Comment: 12 pages, 3 figures, accepted ApJ, revised version following the referee's repor

    The orbit of 2010 TK7. Possible regions of stability for other Earth Trojan asteroids

    Full text link
    Recently the first Earth Trojan has been observed (Mainzer et al., ApJ 731) and found to be on an interesting orbit close to the Lagrange point L4 (Connors et al., Nature 475). In the present study we therefore perform a detailed investigation on the stability of its orbit and moreover extend the study to give an idea of the probability to find additional Earth-Trojans. Our results are derived using different approaches: a) we derive an analytical mapping in the spatial elliptic restricted three-body problem to find the phase space structure of the dynamical problem. We explore the stability of the asteroid in the context of the phase space geometry, including the indirect influence of the additional planets of our Solar system. b) We use precise numerical methods to integrate the orbit forward and backward in time in different dynamical models. Based on a set of 400 clone orbits we derive the probability of capture and escape of the Earth Trojan asteroids 2010 TK7. c) To this end we perform an extensive numerical investigation of the stability region of the Earth's Lagrangian points. We present a detailed parameter study in the regime of possible stable tadpole and horseshoe orbits of additional Earth-Trojans, i.e. with respect to the semi-major axes and inclinations of thousands of fictitious Trojans. All three approaches underline that the Earth Trojan asteroid 2010 TK7 finds himself in an unstable region on the edge of a stable zone; additional Earth-Trojan asteroids may be found in this regime of stability.Comment: 11 pages, 16 figure

    A MICROCOMPUTER MODEL FOR IRRIGATION SYSTEM EVALUATION

    Get PDF
    ICEASE (Irrigation Cost Estimator and System Evaluator) is a microcomputer model designed and developed to meet the need for conducting economic evaluation of adjustments to irrigation systems and management techniques to improve the use of irrigated water. ICEASE can calculate the annual operating costs for irrigation systems and has five options that can be used to economically evaluate improvements in the pumping plant or the way the irrigation system is used for crop production.Crop Production/Industries,

    Juvenile Myelomonocytic Leukemia: Molecular Pathogenesis Informs Current Approaches to Therapy and Hematopoietic Cell Transplantation

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a rare childhood leukemia that has historically been very difficult to confidently diagnose and treat. The majority of patients ultimately require allogeneic hematopoietic cell transplantation (HCT) for cure. Recent advances in the understanding of the pathogenesis of the disease now permit over 90% of patients to be molecularly characterized. Pre-HCT management of patients with JMML is currently symptom-driven. However, evaluation of potential high-risk clinical and molecular features will determine which patients could benefit from pre-HCT chemotherapy and/or local control of splenic disease. Furthermore, new techniques to quantify minimal residual disease burden will determine whether pre-HCT response to chemotherapy is beneficial for long-term disease-free survival. The optimal approach to HCT for JMML is unclear, with high relapse rates regardless of conditioning intensity. An ongoing clinical trial in the Children’s Oncology Group will test if less toxic approaches can be equally effective, thereby shifting the focus to post-HCT immunomanipulation strategies to achieve long-term disease control. Finally, our unraveling of the molecular basis of JMML is beginning to identify possible targets for selective therapeutic interventions, either pre- or post-HCT, an approach which may ultimately provide the best opportunity to improve outcomes for this aggressive disease

    Dothistroma septosporum: producción de esporas y condiciones climáticas

    Get PDF
    Dothistroma septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 °C was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0.El Dothistroma septosporum, el agente causal del tizón Dothistroma de las acículas, es un hongo ampliamente distribuido que infecta más de 80 especies de coníferas en el mundo. La propagación de la infección está fuertemente afectada por factores climáticos de cada localidad donde se registra. Tratamos de describir los factores limitantes necesarios para la liberación de los conidios de D. septosporum y averiguar el momento de la producción de esporas en el año. Para este fin se utilizó una trampa de esporas volumétrica y una estación meteorológica automáticas. Se ha encontrado que fue necesaria una temperatura media mínima diaria de 10 °C para cualquier producción de esporas, así como un largo período de alta humedad del aire. Los valores obtenidos en el presente estudio fueron un poco más altos que los publicados anteriormente, que pueden surgerir preguntas acerca de una posible tendencia cambiante de la conducta en el desarrollo del agente causal del tizón Dothistroma de las acículas. Se utilizaron modelos autorregresivos integrados media móvil (ARIMA) para predecir los conteos de esporas sobre la base de los valores anteriores de los recuentos de esporas y del punto de rocío. Para una localidad de Hackerovka, el mejor modelo ARIMA es 1.0.0 y para una localidad de Lanzhot, el mejor fue 3.1.0

    Where are the Uranus Trojans?

    Full text link
    The area of stable motion for fictitious Trojan asteroids around Uranus' equilateral equilibrium points is investigated with respect to the inclination of the asteroid's orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L4 and L5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 billion years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 < a < 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids' orbit was varied in the range 0 < i < 60 and the semimajor axes were fixed. It turned out that only four 'windows' of stable orbits survive: these are the orbits for the initial inclinations 0 < i < 7, 9 < i < 13, 31 < i < 36 and 38 < i < 50. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.Comment: 15 pages, 12 figures, submitted to CMD

    Latitude and Longing: Cartography of Desire

    Get PDF
    pages 91-9

    Multiple Components in Narrow Planetary Rings

    Full text link
    The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.Comment: 4 pages, 7 figures (some in colors
    corecore