13,490 research outputs found

    Reference list for stability theory in ordinary differential equations

    Get PDF
    Reference list for stability and control theory in ordinary differential equation

    3.8-Micron Photometry During the Secondary Eclipse of the Extrasolar Planet HD 209458b

    Get PDF
    We report infrared photometry of the extrasolar planet HD 209458b during the time of secondary eclipse (planet passing behind the star). Observations were acquired during two secondary eclipses at the NASA Infrared Telescope Facility (IRTF) in September 2003. We used a circular variable filter (1.5-percent bandpass) centered at 3.8 microns to isolate the predicted flux peak of the planet at this wavelength. Residual telluric absorption and instrument variations were removed by offsetting the telescope to nearby bright comparison stars at a high temporal cadence. Our results give a secondary eclipse depth of 0.0013 +/- 0.0011, not yet sufficient precision to detect the eclipse, whose expected depth is approximately 0.002 - 0.003. We here elucidate the current observational limitations to this technique, and discuss the approach needed to achieve detections of hot Jupiter secondary eclipses at 3.8 microns from the ground.Comment: 5 pages, 5 figures, in press for MNRA

    What is Causing This Man\u27s Rectal Pain and Urinary Retention?

    Get PDF
    Case: A 23-year-old man presented to an urgent care office with a 2-week history of rectal pain and scant rectal bleeding. In the few days leading up to his presentation, he also had a fever of 101° F (38.3° C), inguinal lymphadenopathy, and urinary retention

    A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1

    Get PDF
    Eclipsing planetary systems give us an important window on extrasolar planet atmospheres. By measuring the depth of the secondary eclipse, when the planet moves behind the star, we can estimate the strength of the thermal emission from the day side of the planet. Attaining a ground-based detection of one of these eclipses has proven to be a significant challenge, as time-dependent variations in instrument throughput and atmospheric seeing and absorption overwhelm the small signal of the eclipse at infrared wavelengths. We gathered a series of simultaneous L grism spectra of the transiting planet system TrES-1 and a nearby comparison star of comparable brightness, allowing us to correct for these effects in principle. Combining the data from two eclipses, we demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to the stellar flux. This approaches the sensitivity required to detect the planetary emission, which theoretical models predict should lie between 0.05-0.1% of the stellar flux in our 2.9-4.3 micron bandpass. We explore the factors that ultimately limit the precision of this technique, and discuss potential avenues for future improvements.Comment: 10 pages, 1 table, four figures, accepted for publication in PAS

    SETI science working group report

    Get PDF
    This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications

    A Statistical Model of Magnetic Islands in a Large Current Layer

    Full text link
    We develop a statistical model describing the dynamics of magnetic islands in very large current layers that develop in space plasma. Two parameters characterize the island distribution: the flux contained in the island and the area it encloses. We derive an integro-differential evolution equation for this distribution function, based on rules that govern the small-scale generation of secondary islands, the rates of island growth, and island merging. Our numerical solutions of this equation produce island distributions relevant to the magnetosphere and corona. We also derive and analytically solve a differential equation for large islands that explicitly shows the role merging plays in island growth.Comment: 4 pages, 3 figure
    corecore