54,377 research outputs found

    Searching for a dark matter coupling to the Standard Model with a Stueckelberg extension

    Full text link
    We investigate a double extension to the Standard Model (SM). A first extension introduces, via minimal coupling, a massive Z′Z' boson. This enlarged SM is coupled to a dark matter sector through the Stueckelberg mechanism by a A′A' boson. However, the A′A' boson does not interact directly with the SM fermions. In our study, we found that the A′A' is a massless photon-like particle in dark sector. Constraints on the mass for Z′Z' and corrections to ZZ mass are obtained.Comment: Presented at IWARA 2011. "Fifth International Workshop on Astronomy and Relativistic Astrophysics" Jo\~ao Pessoa, Brazil, October 9 to 12, 201

    Kinklike structures in scalar field theories: from one-field to two-field models

    Get PDF
    In this paper we study the possibility of constructing two-field models from one-field models. The idea is to start with a given one-field model and use the deformation procedure to generate another one-field model, and then couple the two one-field models nontrivially, to get to a two-field model, together with some explicit topological solutions. We show with several distinct examples that the procedure works nicely and can be used generically.Comment: 8 pages; version to appear in Phys. Lett.

    Massive "spin-2" theories in arbitrary D≥3D \ge 3 dimensions

    Full text link
    Here we show that in arbitrary dimensions D≥3D\ge 3 there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in D=3D=3 and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in D=3D=3 where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor e[μν]e_{[\mu\nu]} propagates at large momentum as 1/p21/p^2 instead of 1/p41/p^4. So, the same kind of obstacle for the renormalizability of the New Massive Gravity reappears in this nonsymmetric higher order description of massive spin-2 particles.Comment: 11 pages, 0 figure

    Massive spin-2 particles via embedment of the Fierz-Pauli equations of motion

    Full text link
    Here we obtain alternative descriptions of massive spin-2 particles by an embedding procedure of the Fierz-Pauli equations of motion. All models are free of ghosts at quadratic level although most of them are of higher order in derivatives. The models that we obtain can be nonlinearly completed in terms of a dynamic and a fixed metric. They include some f(R)f(R) massive gravities recently considered in the literature. In some cases there is an infrared (no derivative) modification of the Fierz-Pauli mass term altogether with higher order terms in derivatives. The analytic structure of the propagator of the corresponding free theories is not affected by the extra terms in the action as compared to the usual second order Fierz-Pauli theory.Comment: 13 page

    Density-Dependent Synthetic Gauge Fields Using Periodically Modulated Interactions

    Get PDF
    We show that density-dependent synthetic gauge fields may be engineered by combining periodically modu- lated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density- dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at vanishing interactions, characterized by the appearance of a fractional Mott insulator.Comment: 5 pages, 5 figure
    • …
    corecore