1,881 research outputs found

    Pattern Formation by Boundary Forcing in Convectively Unstable, Oscillatory Media With and Without Differential Transport

    Full text link
    Motivated by recent experiments and models of biological segmentation, we analyze the exicitation of pattern-forming instabilities of convectively unstable reaction-diffusion-advection (RDA) systems, occuring by means of constant or periodic forcing at the upstream boundary. Such boundary-controlled pattern selection is a generalization of the flow-distributed oscillation (FDO) mechanism that can include Turing or differential flow instability (DIFI) modes. Our goal is to clarify the relationships among these mechanisms in the general case where there is differential flow as well as differential diffusion. We do so by analyzing the dispersion relation for linear perturbations and showing how its solutions are affected by differential transport. We find a close relationship between DIFI and FDO, while the Turing mechanism gives rise to a distinct set of unstable modes. Finally, we illustrate the relevance of the dispersion relations using nonlinear simulations and we discuss the experimental implications of our results.Comment: Revised version with added content (new section and figures added), changes to wording and organizatio

    Scanning Laser Acoustic Microscope Visualization of Solid Inclusions in Silicon Nitride

    Get PDF
    The Scanning Laser Acoustic Microscope (SLAM) operating at a frequency of 100 MHz is used to characterize solid inclusions in silicon nitride. Ten, seven millimeter thick discs, with 100 and 400 micron implanted inclusions are analyzed. We find that the images of a solid inclusion are characterized by a bright high transmission central zone, a well defined dark boundary and a characteristic diffraction ring pattern. These image features differentiate solid inclusions from pores and voids which may also be encountered in the samples. The images of the implanted flaws were generally found to be larger than anticipated. This can be understood in terms of the divergence of the sound due to diffraction and due to lens action of the curved boundary of the flaw. Our initial observations suggest that accurate estimates of defect size may be obtaiRable from a more complete analysis of SLAM micrographs

    Differentiation of Various Flaw Types in Ceramics Using the Scanning Laser Acoustic Microscope

    Get PDF
    High frequency acoustic imaging represents a powerful technique for the nondestructive evaluation of optically opaque materials. In this report the Scanning Laser Acoustic Microscope (SLAM) is used to detect and characterize flaws in ceramics. SLAM micrographs showing typical examples of cracks, laminar flaws, porosity and solid inclusions. are presented. The various flaw types are easily differentiated on the basis of their characteristic acoustic signatures. The importance of an imaging approach to the nondestructive evaluation of ceramics is demonstrated

    Analysis of Nonlinear Synchronization Dynamics of Oscillator Networks by Laplacian Spectral Methods

    Full text link
    We analyze the synchronization dynamics of phase oscillators far from the synchronization manifold, including the onset of synchronization on scale-free networks with low and high clustering coefficients. We use normal coordinates and corresponding time-averaged velocities derived from the Laplacian matrix, which reflects the network's topology. In terms of these coordinates, synchronization manifests itself as a contraction of the dynamics onto progressively lower-dimensional submanifolds of phase space spanned by Laplacian eigenvectors with lower eigenvalues. Differences between high and low clustering networks can be correlated with features of the Laplacian spectrum. For example, the inhibition of full synchoronization at high clustering is associated with a group of low-lying modes that fail to lock even at strong coupling, while the advanced partial synchronizationat low coupling noted elsewhere is associated with high-eigenvalue modes.Comment: Revised version: References added, introduction rewritten, additional minor changes for clarit

    Clustering and Synchronization of Oscillator Networks

    Full text link
    Using a recently described technique for manipulating the clustering coefficient of a network without changing its degree distribution, we examine the effect of clustering on the synchronization of phase oscillators on networks with Poisson and scale-free degree distributions. For both types of network, increased clustering hinders global synchronization as the network splits into dynamical clusters that oscillate at different frequencies. Surprisingly, in scale-free networks, clustering promotes the synchronization of the most connected nodes (hubs) even though it inhibits global synchronization. As a result, scale-free networks show an additional, advanced transition instead of a single synchronization threshold. This cluster-enhanced synchronization of hubs may be relevant to the brain with its scale-free and highly clustered structure.Comment: Submitted to Phys. Rev.

    Fusion of simian immunodeficiency virus with liposomes and erythrocyte ghost membranes: Effects of lipid composition, pH and calcium

    Get PDF
    Simian immunodeficiency virus from macaques (SIV(mac)) is closely related in its structure and biological activity to human immunodeficiency virus, and is the best animal model for the acquired immunodeficiency syndrome. We investigated the kinetics of membrane fusion between SIV(mac) and phospholipid vesicles and the effects of various parameters on this process. Purified SIV(mac) was labelled with octadecyl rhodamine B chloride, and fusion was continuously monitored as the dilution of the probe in target membranes. These studies show that SIV(mac) fusion is strongly dependent upon the liposome composition. Fusion with pure cardiolipin (CL) liposomes is significantly faster than with CL/dioleoylphosphatidylcholine (DOPC) (3 : 7), phosphatidylserine (PS) or disialoganglioside (G(D1a))/DOPC (1.5 : 8.5) vesicles. SIV(mac) does not fuse appreciably with pure DOPC liposomes. Reduction of pH from 7.5 to 4.5 greatly enhances the rate of SIV(mac) fusion with CL, CL/DOPC and PS membranes, but does not affect fusion with DOPC or G(D1a)/DOPC membranes. Calcium stimulates viral fusion with CL liposomes, but not with CL/DOPC or DOPC liposomes. SIV(mac) fuses with human erythrocyte ghost membranes only slowly at reduced pH. Our results indicate that SIV(mac) can fuse with membranes lacking the known viral receptor, CD4. Although the mechanism of SIV(mac) fusion with model and biological membranes remains to be determined, the fusion activity of SIV(mac) shares similarities with other lipid-enveloped viruses such as Sendai and influenza viruses
    corecore