18,424 research outputs found

    Pressure screening and fluctuations at the bottom of a granular column

    Full text link
    We report sets of precise and reproducible measurements on the static pressure at the bottom of a granular column. We make a quantitative analysis of the pressure saturation when the column height is increased. We evidence a great sensitivity of the measurements with the global packing fraction and the eventual presence of shear bands at the boundaries. We also show the limit of the classical Janssen model and discuss these experimental results under the scope of recently proposed theoretical frameworks.Comment: 17 pages, Latex, 8 eps figures, to appear in the European Physical Journal B (1999

    Vehicle design considerations for active control application to subsonic transport aircraft

    Get PDF
    The state of the art in active control technology is summarized. How current design criteria and airworthiness regulations might restrict application of this emerging technology to subsonic CTOL transports of the 1980's are discussed. Facets of active control technology considered are: (1) augmentation of relaxed inherent stability; (2) center-of-gravity control; (3) ride quality control; (4) load control; (5) flutter control; (6) envelope limiting, and (7) pilot interface with the control system. A summary and appraisal of the current state of the art, design criteria, and recommended practices, as well as a projection of the risk in applying each of these facets of active control technology is given. A summary of pertinent literature and technical expansions is included

    A Low Cost and Labor Efficient Method for Rearing Black Cutworms (Lepidoptera: Noctuidae)

    Get PDF
    The black cutworm, Agrotis ipsilon (Hufnagel), has been and continues to be the subject of many biological and control studies in the north-central states. Interest in this insect can often be traced to its status as a major, but sporadic pest of field com in the region

    Multi-band spectroscopy of inhomogeneous Mott-insulator states of ultracold bosons

    Full text link
    In this work, we use inelastic scattering of light to study the response of inhomogeneous Mott-insulator gases to external excitations. The experimental setup and procedure to probe the atomic Mott states are presented in detail. We discuss the link between the energy absorbed by the gases and accessible experimental parameters as well as the linearity of the response to the scattering of light. We investigate the excitations of the system in multiple energy bands and a band-mapping technique allows us to identify band and momentum of the excited atoms. In addition the momentum distribution in the Mott states which is spread over the entire first Brillouin zone enables us to reconstruct the dispersion relation in the high energy bands using a single Bragg excitation with a fixed momentum transfer.Comment: 19 pages, 7 figure

    Manual control theory applied to air traffic controller-pilot cooperation

    Get PDF
    Reduced runway separation standards are among the means which have been proposed for increasing airport capacity. The probability of a blunder will dominate the calculation of safe separation standards. Then the determinant of safe system performance will be the system reaction time comprised of the air traffic controller's detection, decision and communication delays, and the response times of the pilot and aircraft in executing a collision avoidance manuever. Estimates of these times, based on existing data, show that the delays ascribable to the human portions of the man-machine system are comparatively unimportant. New developments in radar, computers, and data links will be required to provide any substantial improvement of the existing system, and the goal of 2500 ft of separation may not be achievable

    Characterization of high-current pulsed arcs ranging from 100--250 kA peak

    Get PDF
    In this paper, we present the laboratory study on three experimental setups that produce a free arc channel subjected to the transient phase of a lightning current waveform. This work extends the high-current pulsed arc characterization performed in previous studies for peak levels up to 100 kA. Eleven high-current waveforms with peak value ranging from 100--250 kA with different growth rates and action integrals are studied, allowing the comparison of different test benches. These waveforms correspond to standard lightning ones used in aircraft certification processes. Hydrodynamic properties such as arc channel evolution and shock-wave propagation are determined by high-speed video imaging and the background-oriented Schlieren method. The arc diameter reaches around 90mm at 50 μ\mus for a current of 250 kA peak. Space- and time-resolved measurements of temperature, electron density and pressure are assessed by optical emission spectroscopy associated with the radiative transfer equation. It is solved across the arc column and takes into account the assumption of non-optically thin plasma at local thermodynamic equilibrium. For a 250 kA waveform, temperatures up to 43000K are found, with pressures in the order of 50 bar. The influence of current waveform parameters on the arc properties are analyzed and discussed
    corecore