80 research outputs found

    Non-homogenous disks in the chain of matrices

    Full text link
    We investigate the generating functions of multi-colored discrete disks with non-homogenous boundary conditions in the context of the Hermitian multi-matrix model where the matrices are coupled in an open chain. We show that the study of the spectral curve of the matrix model allows one to solve a set of loop equations to get a recursive formula computing mixed trace correlation functions to leading order in the large matrix limit.Comment: 25 pages, 4 figure

    Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach

    Get PDF
    We solve the loop equations of the β\beta-ensemble model analogously to the solution found for the Hermitian matrices β=1\beta=1. For \beta=1,thesolutionwasexpressedusingthealgebraicspectralcurveofequation, the solution was expressed using the algebraic spectral curve of equation y^2=U(x).Forarbitrary. For arbitrary \beta,thespectralcurveconvertsintoaSchro¨dingerequation, the spectral curve converts into a Schr\"odinger equation ((\hbar\partial)^2-U(x))\psi(x)=0with with \hbar\propto (\sqrt\beta-1/\sqrt\beta)/N.Thispaperissimilartothesisterpaper I,inparticular,allthemainingredientsspecificforthealgebraicsolutionoftheproblemremainthesame,butherewepresentthesecondapproachtofindingasolutionofloopequationsusingsectorwisedefinitionofresolvents.Beingtechnicallymoreinvolved,itallowsdefiningconsistentlytheBcyclestructureoftheobtainedquantumalgebraiccurve(aDmoduleoftheform. This paper is similar to the sister paper~I, in particular, all the main ingredients specific for the algebraic solution of the problem remain the same, but here we present the second approach to finding a solution of loop equations using sectorwise definition of resolvents. Being technically more involved, it allows defining consistently the B-cycle structure of the obtained quantum algebraic curve (a D-module of the form y^2-U(x),where, where [y,x]=\hbar)andtoconstructexplicitlythecorrelationfunctionsandthecorrespondingsymplecticinvariants) and to construct explicitly the correlation functions and the corresponding symplectic invariants F_h,orthetermsofthefreeenergy,in1/N2, or the terms of the free energy, in 1/N^2-expansion at arbitrary \hbar. The set of "flat" coordinates comprises the potential times tkt_k and the occupation numbers \widetilde{\epsilon}_\alpha.WedefineandinvestigatethepropertiesoftheAandBcycles,formsof1st,2ndand3rdkind,andtheRiemannbilinearidentities.Weusetheseidentitiestofindexplicitlythesingularpartof. We define and investigate the properties of the A- and B-cycles, forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use these identities to find explicitly the singular part of \mathcal F_0thatdependsexclusivelyon that depends exclusively on \widetilde{\epsilon}_\alpha$.Comment: 58 pages, 7 figure

    Topological expansion and boundary conditions

    Get PDF
    In this article, we compute the topological expansion of all possible mixed-traces in a hermitian two matrix model. In other words we give a recipe to compute the number of discrete surfaces of given genus, carrying an Ising model, and with all possible given boundary conditions. The method is recursive, and amounts to recursively cutting surfaces along interfaces. The result is best represented in a diagrammatic way, and is thus rather simple to use.Comment: latex, 25 pages. few misprints correcte

    Matrix eigenvalue model: Feynman graph technique for all genera

    Get PDF
    We present the diagrammatic technique for calculating the free energy of the matrix eigenvalue model (the model with arbitrary power β\beta by the Vandermonde determinant) to all orders of 1/N expansion in the case where the limiting eigenvalue distribution spans arbitrary (but fixed) number of disjoint intervals (curves).Comment: Latex, 27 page

    Large deviations of the maximal eigenvalue of random matrices

    Full text link
    We present detailed computations of the 'at least finite' terms (three dominant orders) of the free energy in a one-cut matrix model with a hard edge a, in beta-ensembles, with any polynomial potential. beta is a positive number, so not restricted to the standard values beta = 1 (hermitian matrices), beta = 1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This model allows to study the statistic of the maximum eigenvalue of random matrices. We compute the large deviation function to the left of the expected maximum. We specialize our results to the gaussian beta-ensembles and check them numerically. Our method is based on general results and procedures already developed in the literature to solve the Pastur equations (also called "loop equations"). It allows to compute the left tail of the analog of Tracy-Widom laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos corrected and preprint added ; v4 few more numbers adde

    Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence

    Get PDF
    We propose an asymptotic expansion formula for matrix integrals, including oscillatory terms (derivatives of theta-functions) to all orders. This formula is heuristically derived from the analogy between matrix integrals, and formal matrix models (combinatorics of discrete surfaces), after summing over filling fractions. The whole oscillatory series can also be resummed into a single theta function. We also remark that the coefficients of the theta derivatives, are the same as those which appear in holomorphic anomaly equations in string theory, i.e. they are related to degeneracies of Riemann surfaces. Moreover, the expansion presented here, happens to be independent of the choice of a background filling fraction.Comment: 23 pages, Late

    Cut-and-Join operator representation for Kontsevich-Witten tau-function

    Full text link
    In this short note we construct a simple cut-and-join operator representation for Kontsevich-Witten tau-function that is the partition function of the two-dimensional topological gravity. Our derivation is based on the Virasoro constraints. Possible applications of the obtained expression are discussed.Comment: 5 pages, minor correction

    All genus correlation functions for the hermitian 1-matrix model

    Full text link
    We rewrite the loop equations of the hermitian matrix model, in a way which allows to compute all the correlation functions, to all orders in the topological 1/N21/N^2 expansion, as residues on an hyperelliptical curve. Those residues, can be represented diagrammaticaly as Feynmann graphs of a cubic interaction field theory on the curve.Comment: latex, 19 figure

    Partition Functions of Matrix Models as the First Special Functions of String Theory. II. Kontsevich Model

    Full text link
    In arXiv:hep-th/0310113 we started a program of creating a reference-book on matrix-model tau-functions, the new generation of special functions, which are going to play an important role in string theory calculations. The main focus of that paper was on the one-matrix Hermitian model tau-functions. The present paper is devoted to a direct counterpart for the Kontsevich and Generalized Kontsevich Model (GKM) tau-functions. We mostly focus on calculating resolvents (=loop operator averages) in the Kontsevich model, with a special emphasis on its simplest (Gaussian) phase, where exists a surprising integral formula, and the expressions for the resolvents in the genus zero and one are especially simple (in particular, we generalize the known genus zero result to genus one). We also discuss various features of generic phases of the Kontsevich model, in particular, a counterpart of the unambiguous Gaussian solution in the generic case, the solution called Dijkgraaf-Vafa (DV) solution. Further, we extend the results to the GKM and, in particular, discuss the p-q duality in terms of resolvents and corresponding Riemann surfaces in the example of dualities between (2,3) and (3,2) models.Comment: 48 pages, 2 figure
    corecore