5,076 research outputs found

    The Nuclease Activity of the Yeast Dna2 Protein, Which Is Related to the RecB-like Nucleases, Is Essential in Vivo

    Get PDF
    Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype

    The Thermal Instability of Solar Prominence Threads

    Full text link
    The fine structure of solar prominences and filaments appears as thin and long threads in high-resolution images. In H-alpha observations of filaments, some threads can be observed for only 5 - 20 minutes before they seem to fade and eventually disappear, suggesting that these threads may have very short lifetimes. The presence of an instability might be the cause of this quick disappearance. Here, we study the thermal instability of prominence threads as an explanation of their sudden disappearance from H-alpha observations. We model a prominence thread as a magnetic tube with prominence conditions embedded in a coronal environment. We assume a variation of the physical properties in the transverse direction, so that the temperature and density continuously change from internal to external values in an inhomogeneous transitional layer representing the particular prominence-corona transition region (PCTR) of the thread. We use the nonadiabatic and resistive magnetohydrodynamic equations, which include terms due to thermal conduction parallel and perpendicular to the magnetic field, radiative losses, heating, and magnetic diffusion. We combine both analytical and numerical methods to study linear perturbations from the equilibrium state, focusing on unstable thermal solutions. We find that thermal modes are unstable in the PCTR for temperatures higher than 80,000 K, approximately. These modes are related to temperature disturbances that can lead to changes in the equilibrium due to rapid plasma heating or cooling. For typical prominence parameters, the instability time scale is of the order of a few minutes and is independent of the form of the temperature profile within the PCTR of the thread. This result indicates that thermal instability may play an important role for the short lifetimes of threads in the observations.Comment: Accepted for publication in Ap

    Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes

    Get PDF
    The high energy density required for the next generation of lithium batteries will likely be enabled by a shift toward lithium metal anode from the conventional intercalation-based anode such as graphite. However, several critical challenges for Li metal originate from its highly reactive nature and the hostless reaction of deposition and stripping impede the practical use of Li metal as an anode. The role of the solid electrolyte interphase (SEI) is very important for the Li metal anode where the SEI must protect the dynamically changing surface of the Li metal. Since the SEI-generating reaction mechanisms for the two different electrolyte systems, liquid and solid, are considerably different, the SEI layers formed between the Li metal and the electrolytes in the two electrolyte systems have substantially different properties, causing different interfacial issues. Inhibition of the interfacial problems requires different strategies to reinforce the SEI layer for each of the electrolyte systems. However, the differences in the two electrolyte systems have not been clearly compared in the prior literature. In this report, the interfacial issues for the two different electrolyte systems are compared and different strategies for SEI modification are provided to overcome the issues

    Observational Signatures of Simulated Reconnection Events in the Solar Chromosphere and Transition Region

    Full text link
    We present the results of numerical simulations of wave-induced magnetic reconnection in a model of the solar atmosphere. In the magnetic field geometry we study in this article, the waves, driven by a monochromatic piston and a driver taken from Hinode observations, induce periodic reconnection of the magnetic field, and this reconnection appears to help drive long-period chromospheric jets. By synthesizing observations for a variety of wavelengths that are sensitive to a wide range of temperatures, we shed light on the often confusing relationship between the plethora of jet-like phenomena in the solar atmosphere, e.g., explosive events, spicules, blinkers, and other phenomena thought to be caused by reconnection.Comment: 13 pages, 22 figures. Submitted to The Astrophysical Journa

    One dimensional magneto-optical compression of a cold CaF molecular beam

    Get PDF
    We demonstrate with a RF-MOT the one dimensional, transverse magneto-optical compression of a cold beam of calcium monofluoride (CaF). By continually alternating the magnetic field direction and laser polarizations of the magneto-optical trap, a photon scattering rate of 2π×2\pi \times0.4 MHz is achieved. A 3D model for this RF-MOT, validated by agreement with data, predicts a 3D RF-MOT capture velocity for CaF of 5 m/s

    Perspective - Structure and Stability of the Solid Electrolyte Interphase on Silicon Anodes of Lithium-ion Batteries

    Get PDF
    The solid electrolyte interphase (SEI) acts as a protection layer on the surface the anodes of lithium ion batteries to prevent further electrolyte decomposition. Understanding the fundamental properties of the SEI is essential to the development of high capacity silicon anodes. However, the detailed mechanism of the generation of the evolution of the SEI on the silicon anodes is not fully understood. This manuscript reviews our recent investigations of the SEI on silicon anodes. We have studied the fundamental formation mechanism of the SEI on silicon anodes, along with the evolution which occurs to the SEI upon cycling
    • …
    corecore