146 research outputs found

    From COST 238 To COST 296: Four European COST Actions On Ionospheric Physics And Radio Propagation

    Get PDF
    COST (Co-operation in the field of Scientific and Technical Research) is an important instrument supporting co-operation among scientists and researchers across Europe now joining 35 member countries. Scientific projects in the COST framework are called COST Actions and have the objectives embodied in their respective Memorandum of Understanding (MoU). The main objectives of the COST Actions within the European ionospheric and radio propagation community have been: to study the influence of upper atmospheric conditions on terrestrial and Earthspace communications, to develop methods and techniques to improve existing and generate new ionospheric and propagation models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate national and international organizations, institutions and industry dealing with the modern communication systems. This paper summarises in brief the background and historical context of four ionospheric COST Actions and outlines their main objectives and results. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers

    The COST 271 Action: conclusions and the way ahead

    Get PDF
    A brief summary is given of the major achievements of the COST 271 Action. New challenges have been identified that open the way for a proposal, which is outlined, for a follow-on to the COST 271 Action within the COST Telecommunications, Information Science and Technology framework

    COST 271 Action - Effects of the upper atmosphere on terrestrial and Earth-space communications: introduction

    Get PDF
    The COST 271 Action («Effects of the Upper Atmosphere on Terrestrial and Earth-space Communications ») within the European ionospheric community has the objectives, embodied in the Memorandum of Understanding (MoU): to study the influence of upper atmospheric conditions on terrestrial and Earth-space communications, to develop methods and techniques to improve ionospheric models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate Radiocommunication Study Groups of the International Telecommunication Union (ITU-R) and other national and international organizations dealing with the modern communication systems. This introductory paper summarises briefly the background and historical context of COST 271 and outlines the main objectives, working methods and structure. It also lists the participating countries and institutions, the Management Committee (MC) Meetings, Workshops and Short-term Scientific Missions. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers, before outlining the content of the Final Report

    The European COST (Co-operation in the field of Scientific and Technical Research) Actions: an important chance to cooperate and to grow for all the international ionospheric community

    Get PDF
    The current COST (Co-operation in the field of Scientific and Technical Research) Action 296 on Mitigation of Ionospheric Effects on Radio Systems, along with previous COST238 (Prediction and Retrospective Ionospheric Modelling over Europe), COST251 (Improved Quality of Service in Ionospheric Telecommunication Systems Planning and Operation) and COST271 (Effects of the Upper Atmosphere on Terrestrial and Earth-Space Communications) Actions have addressed investigations of the different effects of the ionosphere on terrestrial telecommunication systems and on Earth-space systems. Throughout their lifetime of 20 years, these COST actions have achieved a great deal in long-term archiving of synoptic soundings of the state of the ionosphere, in enhancing understanding of the morphology of the ionosphere and its dependence on space weather and in producing ionosphere-plasmasphere as well as propagation models for terrestrial radio services available to variety of radio users. Besides the formal contributions to ITU-R and the contributions to international organisations such as URSI, COSPAR, EGU and ESA, these COST Actions have provided a forum for the establishment of collaborative European initiatives, a centre of expertise and excellence in ionosphere knowledge when none other equivalent in Europe or elsewhere exists. In this paper, we review the main achievements of the COST 238, 251 and 271 actions as developed in the past studies

    Regional GPS receiver networks for monitoring local mid-latitude total electron content

    Get PDF
    Two regional GPS receiver networks from the Ordnance Survey U.K.(OS)and the Italian Space Agency (ASI) have been used for monitoring mid-latitude Total Electron Content (TEC)during quiet and disturbed ionospheric conditions in the current solar cycle.A few quiet and disturbed days in March and April 2002 were examined. These showed how the temporal and spatial patterns of changes develop and how they are related to solar and geomagnetic activity for parameter descriptive of plasmaspheric-ionospheric ionisation.Use is then made of computer contouring techniques to produce snapshots of daily maps of TEC for these different regional areas

    A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Get PDF
    For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF) disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton) in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component) from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy

    Proposed terminology for the classification and parameters for the quantification of variability in ionosphere morphology

    Get PDF
    Much uncertainty currently exists in the use by different workers of the term ‘variability’ in describing the results of statistical analyses applied to ionospheric measurement data sets and in their relationships with various existing or new ionospheric models. Often it is not clear whether data for different time periods or different geographical areas, and if so which, are being used to formulate results. Terms are presented in the Annex which it is suggested should be used, at least once in every publication addressing this topic, to describe unambiguously what is talked about. The background to the proposed terminology is discussed. Options for variability parameters are also addressed

    COST 296 MIERS: Mitigation of Ionospheric Effects on Radio Systems

    Get PDF
    The COST 296 Action MIERS (Mitigation of Ionospheric Effects on Radio Systems) within the ionospheric community has the objectives, embodied in the Memorandum of Understanding (MoU), to develop an increased knowledge of the effects imposed by the ionosphere on practical radio systems, and the development and implementation of techniques to mitigate the deleterious effects of the ionosphere on such systems. This introductory paper summarizes briefly the background and historical context of COST 296 and outlines the main objectives, working methods and structure. It also lists the participating countries and institutions, the Management Committee (MC) Meetings, the Workshops, Short-term Scientific Missions. In addition, the paper discusses the dissemination activities and the collaboration among the participating institutions and researchers, before outlining the content of the Final Report

    COST 296 MIERS: conclusion

    Get PDF
    The need for more reliable and efficient communications services, especially those involving ionospheric HF communications and navigational systems, imposes increasing demand for a better knowledge of the effects imposed by the Earth’s upper atmosphere and ways to mitigate disturbing effects. Temporal and spatial changes in the upper atmosphere act to limit and degrade the performance of terrestrial and Earth-space radio systems in many different ways and this is why mitigation activities must involve several topics like ionospheric monitoring and modeling, development of new hardware for communication systems and new propagation simulator, measurements and modeling of ionospheric Total Electron Content (TEC) and ionospheric scintillations, using in particular the Global Positioning System (GPS). The European ionospheric community has long been aware that cooperation research on an international basis is essential to deal with such complex issues. In particular, international cooperation is required for the collection of data, in both the real-time and in retrospective modes, the development and verification of new methods to improve the performance of both operational and future terrestrial and Earth-space communication systems and the exchange of expertise on space plasma effects on Global Navigation Satellite Systems (GNSS). In this context the COST 296 Action MIERS on the «Mitigation of Ionospheric Effects on Radio Systems» has made a significant impact in a number of areas

    Ionospheric storm forecasting technique by artificial neural network

    Get PDF
    In this work we further refine and improve the neural network based ionospheric characteristic's foF2 predictor, which is actually a neural network autoregressive model with additional input signals (NNARX). Our analysis is focused on choice of X parts of NNARX model in order to capture middle and long term dependencies. Daily distribution of prediction error suggests need for structural changes of the neural network model, as well as adaptation of running average lengths used for determination of X inputs. Generalisation properties of proposed neural predictor are improved by carefully designed pruning procedure with additional regularisation term in criterion function. Some results from the NNARX model are presented to illustrate the feasibility of using such a model as ionospheric storm forecasting technique
    corecore