11 research outputs found

    Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    Get PDF
    Background: Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods: We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results: During July-August 2011 and January-March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions: Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling

    Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core

    No full text
    Despite advances in monitoring and modelling of intra-urban variation in multiple pollutants, few studies have attempted to separate spatial patterns by time of day, or incorporated organic tracers into spatial monitoring studies. Due to varying emissions sources from diesel and gasoline vehicular traffic, as well as within-day temporal variation in source mix and intensity (e.g., rush-hours vs. full-day measures), accurately assessing diesel-related air pollution within an urban core can be challenging. We allocated 24 sampling sites across downtown Pittsburgh, Pennsylvania (2.8 km2) to capture fine-scale variation in diesel-related pollutants, and to compare these patterns by sampling interval (i.e., “rush-hours” vs. “work-week” concentrations), and by season. Using geographic information system (GIS)-based methods, we allocated sampling sites to capture spatial variation in key traffic-related pollution sources (i.e., truck, bus, overall traffic densities). Programmable monitors were used to collect integrated work-week and rush-hour samples of fine particulate matter (PM2.5), black carbon (BC), trace elements, and diesel-related organics (polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes), in summer and winter 2014. Land use regression (LUR) models were created for PM2.5, BC, total elemental carbon (EC), total organic carbon (OC), elemental (Al, Ca, Fe), and organic constituents (total PAHs, total hopanes), and compared by sampling interval and season. We hypothesized higher pollution concentrations and greater spatial contrast in rush-hour, compared to full work-week samples, with variation by season and pollutant. Rush-hour sampling produced slightly higher total PM2.5 and BC concentrations in both seasons, compared to work-week sampling, but no evident difference in spatial patterns. We also found substantial spatial variability in most trace elements and organic compounds, with comparable spatial patterns using both sampling paradigms. Overall, we found higher concentrations of traffic-related trace elements and organic compounds in rush-hour samples, and higher concentrations of coal-related elements (e.g., As, Se) in work-week samples. Mean bus density was the strongest LUR predictor in most models, in both seasons, under each sampling paradigm. Within each season and constituent, the bus-related terms explained similar proportions of variance in the rush-hour and work-week samples. Rush-hour and work-week LUR models explained similar proportions of spatial variation in pollutants, suggesting that the majority of emissions may be produced during rush-hour traffic across downtown. Results suggest that rush-hour emissions may predominantly shape overall spatial variance in diesel-related pollutants
    corecore