7 research outputs found

    Enhancement of LTP in aged rats is dependent on endogenous BDNF

    No full text
    © 2011 American College of Neuropsychopharmacology.Long-term potentiation (LTP), considered the neurophysiological basis for learning and memory, is facilitated by brain-derived neurotrophic factor (BDNF), an action more evident when LTP is evoked by weak θ-burst stimuli and dependent on co-activation of adenosine A2A receptors (A2AR), which are more expressed in aged rats. As θ-burst stimuli also favor LTP in aged animals, we hypothesized that enhanced LTP in aging could be related to changes in neuromodulation by BDNF. The magnitude of CA1 LTP induced by a weak θ-burst stimuli delivered to the Schaffer collaterals was significantly higher in hippocampal slices taken from 36 to 38 and from 70 to 80-week-old rats, when compared with LTP magnitude in slices from 4 or 10 to 15-week-old rats; this enhancement does not impact in cognitive improvement as aged rats revealed an impairment on hippocampal-dependent learning and memory performance, as assessed by the Morris water maze tests. The scavenger for BDNF, TrkB-Fc, and the inhibitor of Trk phosphorylation, K252a, attenuated LTP in slices from 70 to 80-week-old rats, but not from 10 to 15-week-old rats. When exogenously added, BDNF significantly increased LTP in slices from 4 and 10 to 15-week-old rats, but did not further increased LTP in 36 to 38 or 70 to 80-week-old rats. The effects of exogenous BDNF on LTP were prevented by the A2AR antagonist, SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine). These results indicate that the higher LTP magnitude observed upon aging, which does not translate into improved spatial memory performance, is a consequence of an increase in the tonic action of endogenous BDNF.Fundação para a Ciência e Tecnologia, Fundação Calouste Gulbenkian and EU (COST B-30 concerted action

    Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors

    Get PDF
    Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca(2+) influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity

    Beyond the neurotransmitter-focused approach in treating Alzheimer’s Disease: drugs targeting β-amyloid and tau protein

    No full text
    corecore