411 research outputs found
Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems
We have fabricated doubly clamped beams from GaAs/AlGaAs quantum-well heterostructures containing a high-mobility two-dimensional electron gas (2DEG). Applying an rf drive to in-plane side gates excites the beam's mechanical resonance through a dipole–dipole mechanism. Sensitive high-frequency displacement transduction is achieved by measuring the ac emf developed across the 2DEG in the presence of a constant dc sense current. The high mobility of the incorporated 2DEG provides low-noise, low-power, and high-gain electromechanical displacement sensing through combined piezoelectric and piezoresistive mechanisms
Quantum Hall Ferromagnetism in a Two-Dimensional Electron System
Experiments on a nearly spin degenerate two-dimensional electron system
reveals unusual hysteretic and relaxational transport in the fractional quantum
Hall effect regime. The transition between the spin-polarized (with fill
fraction ) and spin-unpolarized () states is accompanied
by a complicated series of hysteresis loops reminiscent of a classical
ferromagnet. In correlation with the hysteresis, magnetoresistance can either
grow or decay logarithmically in time with remarkable persistence and does not
saturate. In contrast to the established models of relaxation, the relaxation
rate exhibits an anomalous divergence as temperature is reduced. These results
indicate the presence of novel two-dimensional ferromagnetism with a
complicated magnetic domain dynamic.Comment: 15 pages, 5 figure
Novel metallic and insulating states at a bent quantum Hall junction
A non-planar geometry for the quantum Hall (QH) effect is studied, whereby
two quantum Hall (QH) systems are joined at a sharp right angle. When both
facets are at equal filling factor nu the junction hosts a channel with
non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3,
with conductance along the junction increasing as the temperature T drops. At
nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T
dependence. Upon applying a dc voltage bias along the junction, the
differential conductance again shows three different behaviors. Hartree
calculations of the dispersion at the junction illustrate possible
explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit
Quantum Hall Effect in a Two-Dimensional Electron System Bent by 90 Degrees
Using a new MBE growth technique, we fabricate a two-dimensional electron
system which is bent around an atomically sharp 90 degree corner. In the
quantum Hall regime under tilted magnetic fields, we can measure equilibration
between both co- and counter-propagating edge channels of arbitrary filling
factor ratio. We present here 4-point magnetotransport characterization of the
corner junction with filling factor combinations which can all be explained
using the standard Landauer-Buttiker edge channel picture. The success of this
description confirms the realization of a new type of quantum Hall edge
geometry.Comment: 4 pages, figures included Typographical errors corrected, reference
adde
Single-Electron Effects in a Coupled Dot-Ring System
Aharonov-Bohm oscillations are studied in the magnetoconductance of a
micron-sized open quantum ring coupled capacitively to a Coulomb-blockaded
quantum dot. As the plunger gate of the dot is modulated and tuned through a
conductance resonance, the amplitude of the Aharonov-Bohm oscillations in the
transconductance of the ring displays a minimum. We demonstrate that the effect
is due to a single-electron screening effect, rather than to dephasing.
Aharonov-Bohm oscillations in a quantum ring can thus be used for the detection
of single charges.Comment: 5 pages, 3 figure
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass
We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and
observed transport evidence of single anisotropic-mass valley occupancy for the
electrons in a 150 \AA wide QW. Our calculations of strain and quantum
confinement for these samples predict single anisotropic-mass valley occupancy
for well widths greater than 53 \AA. Below this, double-valley occupation
is predicted such that the longitudinal mass axes are collinear. We observed
mobility anisotropy in the electronic transport along the crystallographic
directions in the ratio of 2.8, attributed to the mass anisotropy as well as
anisotropic scattering of the electrons in the X-valley of AlAs
Fano effect in a ring-dot system with tunable coupling
Transport measurements are presented on a quantum ring that is tunnel-coupled
to a quantum dot. When the dot is in the Coulomb blockade regime, but strongly
coupled to the open ring, Fano line shapes are observed in the current through
the ring, when the electron number in the dot changes by one. The symmetry of
the Fano resonances is found to depend on the magnetic flux penetrating the
area of the ring and on the strength of the ring-dot coupling. At temperatures
above T=0.65 K the Fano effect disappears while the Aharonov-Bohm interference
in the ring persists up to T=4.2 K. Good agreement is found between these
experimental observations and a single channel scattering matrix model
including decoherence in the dot.Comment: 9 pages, 6 figure
Nerve Terminal Degeneration Is Independent of Muscle Fiber Genotype in SOD1G93A Mice
Background: Motor neuron degeneration in SOD1 G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers. Methodology/Principal Findings: Hindlimb muscles were transplanted between wild-type and SOD1 G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1 G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1 G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1 G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles. Conclusions/Significance: These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1 G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient
- …