42 research outputs found

    Perelman's entropy for some families of canonical metrics

    Get PDF
    We numerically calculate Perelman’s entropy for a variety of canonical metrics on CP1-bundles over products of Fano Kähler-Einstein manifolds. The metrics investigated are Einstein metrics, Kähler-Ricci solitons and quasi-Einstein metrics. The calculation of the entropy allows a rough picture of how the Ricci flow behaves on each of the manifolds in question

    Special K\"ahler-Ricci potentials on compact K\"ahler manifolds

    Full text link
    A special K\"ahler-Ricci potential on a K\"ahler manifold is any nonconstant C∞C^\infty function τ\tau such that J(∇τ)J(\nabla\tau) is a Killing vector field and, at every point with dτ≠0d\tau\ne 0, all nonzero tangent vectors orthogonal to ∇τ\nabla\tau and J(∇τ)J(\nabla\tau) are eigenvectors of both ∇dτ\nabla d\tau and the Ricci tensor. For instance, this is always the case if τ\tau is a nonconstant C∞C^\infty function on a K\"ahler manifold (M,g)(M,g) of complex dimension m>2m>2 and the metric g~=g/τ2\tilde g=g/\tau^2, defined wherever τ≠0\tau\ne 0, is Einstein. (When such τ\tau exists, (M,g)(M,g) may be called {\it almost-everywhere conformally Einstein}.) We provide a complete classification of compact K\"ahler manifolds with special K\"ahler-Ricci potentials and use it to prove a structure theorem for compact K\"ahler manifolds of any complex dimension m>2m>2 which are almost-everywhere conformally Einstein.Comment: 45 pages, AMSTeX, submitted to Journal f\"ur die reine und angewandte Mathemati

    Compact conformally Kahler Einstein-Weyl manifolds

    Get PDF
    We give a classification of compact conformally Kahler Einstein-Weyl manifolds whose Ricci tensor is hermitian.Comment: 11 page

    Kahler manifolds with quasi-constant holomorphic curvature

    Full text link
    The aim of this paper is to classify compact Kahler manifolds with quasi-constant holomorphic sectional curvature.Comment: 18 page

    Ricci-flat Metrics with U(1) Action and the Dirichlet Boundary-value Problem in Riemannian Quantum Gravity and Isoperimetric Inequalities

    Get PDF
    The Dirichlet boundary-value problem and isoperimetric inequalities for positive definite regular solutions of the vacuum Einstein equations are studied in arbitrary dimensions for the class of metrics with boundaries admitting a U(1) action. We show that in the case of non-trivial bundles Taub-Bolt infillings are double-valued whereas Taub-Nut and Eguchi-Hanson infillings are unique. In the case of trivial bundles, there are two Schwarzschild infillings in arbitrary dimensions. The condition of whether a particular type of filling in is possible can be expressed as a limitation on squashing through a functional dependence on dimension in each case. The case of the Eguchi-Hanson metric is solved in arbitrary dimension. The Taub-Nut and the Taub-Bolt are solved in four dimensions and methods for arbitrary dimension are delineated. For the case of Schwarzschild, analytic formulae for the two infilling black hole masses in arbitrary dimension have been obtained. This should facilitate the study of black hole dynamics/thermodynamics in higher dimensions. We found that all infilling solutions are convex. Thus convexity of the boundary does not guarantee uniqueness of the infilling. Isoperimetric inequalities involving the volume of the boundary and the volume of the infilling solutions are then investigated. In particular, the analogues of Minkowski's celebrated inequality in flat space are found and discussed providing insight into the geometric nature of these Ricci-flat spaces.Comment: 40 pages, 3 figure
    corecore