20 research outputs found

    Successful Expansion but Not Complete Restriction of Tropism of Adeno-Associated Virus by In Vivo Biopanning of Random Virus Display Peptide Libraries

    Get PDF
    Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV), we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical

    Variation of BMP3 Contributes to Dog Breed Skull Diversity

    Get PDF
    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait

    Neuroendocrinimmune modulation of secretory component production by rat lacrimal, salivary, and intestinal epithelial cells

    No full text
    Purpose. To evaluate the kinetics, receptor specificity, molecular basis, and site selectivity of the endocrine and neural regulation of secretory component (SC) synthesis by rat lacrimal gland acinar cells. Methods. Acinar cells from male rat lacrimal and submandibular glands, as well as epithelial cells (IEC-6) from the rat small intestine, were cultured in supplemented, serum-free media and treated with dihydrotesterone, cholera toxin, carbachol, vehicle, or other agents for varying time periods. Media SC levels were measured by radioimmunoassay. Results. The authors' findings with lacrimal gland acinar cells demonstrate that: a significant, temporal delay exists between the initiation of stimulatory or inhibitory signals and the eventual cellular SC response to regulatory compounds; the parasympathetic analogue, carbachol, exerts a dual effect on SC output, i.e., an early stimulation (hours) followed by an extended suppression (days); the androgen and cholinergic control of SC is receptor-mediated; and the androgen modulation of SC may involve the induction of gene expression. In addition, the authors' results show that distinct, tissue-specific variations occur in the nature of SC regulation: Compounds that control SC output by lacrimal acinar cells do not necessarily alter SC production by epithelial cells from the rat submandibular gland or small intestine. Conclusions. These findings advance the authors' understanding of the neuroendocrine regulation of SC synthesis in acinar cells from the lacrimal gland. Moreover, the authors' results indicate that the nature of the neural, endocrine, and immune control of lacrimal SC may be unique

    hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1

    No full text
    mRNA structure is important for post-transcriptional regulation, largely because it affects binding of trans-acting factors(1). However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a high-throughput technique to identify RNA secondary structures interacting with RNA-binding proteins (RBPs) in vivo. Using this technique to investigate RNA structures bound by Staufen 1 (STAU1), we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unforeseen prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of SNPs in duplex-forming regions. We also discover a duplex spanning 858nts in the 3′ UTR of the X-box binding Protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene regulation and introduces hiCLIP as a widely applicable method for discovering novel, especially long-range, RNA duplexes
    corecore